Harmonic distortion indicators - Power factor: Difference between revisions

From Electrical Installation Guide
m (cleaned up source: table format, etc ...)
m (Text replacement - "\[\[ru:[^]]*\]\][ \r\n]*" to "")
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Menu_Harmonic_management}}
{{Menu_Harmonic_management}}__TOC__
__TOC__
 
The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter [[Power Factor Correction|Power Factor Correction]].
The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter [[Power Factor Correction|Power Factor Correction]].


<math>\lambda = \frac {P (kW)}{S (kVA)}</math>
<math>\lambda = \frac {P (kW)}{S (kVA)}</math>


The Power Factor must not be mixed-up with the Displacement Power Factor (cosφ), relative to fundamental signals only.
The Power Factor must not be mixed-up with the Displacement Power Factor (cos φ), relative to fundamental signals only.


As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion.
As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion.
Line 12: Line 10:
When the voltage is sinusoidal or virtually sinusoidal (THD<sub>u</sub> ~ 0), it may be said that the active power is only a function of the fundamental current. Then:
When the voltage is sinusoidal or virtually sinusoidal (THD<sub>u</sub> ~ 0), it may be said that the active power is only a function of the fundamental current. Then:


<math>P \approx P1 = U_1\ I_1\ \cos\phi</math>
<math>P \approx P_1 = U_1\ I_1\ \cos\varphi</math>
 


'''Consequently:'''
'''Consequently:'''


<math> \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\varphi}{U_1\ I_{rms} } </math>


<math> \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\phi}{U_1\ I_{rms} } </math>
As: <math>\frac {I_1}{I_{rms} } = \frac {1} {\sqrt {1+THD_i^2} }</math> (see [[Definition of harmonics]]),
 
 
As: <math>\frac {I_1}{I_{rms} } = \frac {1} {\sqrt {1+THD_i^2} }</math> &nbsp;&nbsp;&nbsp;&nbsp;(see [[Definition of harmonics]]),
 
hence: <math> \lambda \approx \frac {cos\phi}{\sqrt{1+THD_i^2} }</math>
 
'''Figure M6''' shows a graph of λ/cosφ as a function of THD<sub>i</sub>, for THD<sub>u</sub> ~ 0.
 
[[File:Fig_M06.jpg|none|499px]]
'''''Fig. M6 :''''' ''Variation of λ/cosφ as a function of THD<sub>i</sub>, for THD<sub>u</sub> ~ 0''


hence: <math> \lambda \approx \frac {cos\varphi}{\sqrt{1+THD_i^2} }</math>


{{FigureRef|M6}} shows a graph of λ/cosφ as a function of THD<sub>i</sub>, for THD<sub>u</sub> ~ 0.


[[ru:Показатели гармоник - коэффициент мощности]]
{{FigImage|DB422615|svg|M6|Variation of λ/cosφ as a function of THDi, for THDu ~ 0}}
[[zh:谐波畸变指标 - 功率因数]]

Latest revision as of 09:48, 22 June 2022

The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter Power Factor Correction.

[math]\displaystyle{ \lambda = \frac {P (kW)}{S (kVA)} }[/math]

The Power Factor must not be mixed-up with the Displacement Power Factor (cos φ), relative to fundamental signals only.

As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion.

When the voltage is sinusoidal or virtually sinusoidal (THDu ~ 0), it may be said that the active power is only a function of the fundamental current. Then:

[math]\displaystyle{ P \approx P_1 = U_1\ I_1\ \cos\varphi }[/math]

Consequently:

[math]\displaystyle{ \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\varphi}{U_1\ I_{rms} } }[/math]

As: [math]\displaystyle{ \frac {I_1}{I_{rms} } = \frac {1} {\sqrt {1+THD_i^2} } }[/math] (see Definition of harmonics),

hence: [math]\displaystyle{ \lambda \approx \frac {cos\varphi}{\sqrt{1+THD_i^2} } }[/math]

Figure M6 shows a graph of λ/cosφ as a function of THDi, for THDu ~ 0.

Fig. M6 – Variation of λ/cosφ as a function of THDi, for THDu ~ 0
Share