Worked example of cable calculation: Difference between revisions

From Electrical Installation Guide
Line 15: Line 15:
   
   


{| style="width: 786px; height: 1719px" cellspacing="1" cellpadding="1" width="786" border="1"
{| style="width: 786px; height: 970px" cellspacing="1" cellpadding="1" width="786" border="1"
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''General network characteristics '''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''General network characteristics '''
|
|    
|    
|   
| valign="top" align="left" | Number of poles and protected poles  
| valign="top" align="left" | Number of poles and protected poles  
| colspan="2" | 4P4d
| valign="top" colspan="2" | 4P4d
|-
|-
| colspan="2" | Earthing system  
| colspan="2" | Earthing system  
Line 39: Line 39:
|    
|    
| Short-delay trip Im / Isd (A)  
| Short-delay trip Im / Isd (A)  
| colspan="2" |   5100
| colspan="2" | 5100
|-
|-
| colspan="2" | Frequency (Hz)  
| colspan="2" | Frequency (Hz)  
Line 50: Line 50:
|    
|    
| Length  
| Length  
| colspan="2" |   20
| colspan="2" | 20
|-
|-
| colspan="2" | Resistance of MV network (mΩ)  
| colspan="2" | Resistance of MV network (mΩ)  
Line 56: Line 56:
|    
|    
| Maximum load current (A)  
| Maximum load current (A)  
| colspan="2" |   509
| colspan="2" | 509
|-
|-
| colspan="2" | Reactance of MV network (mΩ)  
| colspan="2" | Reactance of MV network (mΩ)  
Line 62: Line 62:
|    
|    
| Type of insulation  
| Type of insulation  
| colspan="2" |   PVC
| colspan="2" | PVC
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Transformer T1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Transformer T1'''  
Line 68: Line 68:
|    
|    
| Ambient temperature (°C)  
| Ambient temperature (°C)  
| colspan="2" |   30
| colspan="2" | 30
|-
|-
| colspan="2" | Rating (kVA)  
| colspan="2" | Rating (kVA)  
Line 74: Line 74:
|    
|    
| Conductor material  
| Conductor material  
| colspan="2" |   Copper
| colspan="2" | Copper
|-
|-
| colspan="2" | Short-circuit impedance voltage (%)  
| colspan="2" | Short-circuit impedance voltage (%)  
Line 80: Line 80:
|    
|    
| Single-core or multi-core cable  
| Single-core or multi-core cable  
| colspan="2" |   Single
| colspan="2" | Single
|-
|-
| colspan="2" | Transformer resistance RT (mΩ)  
| colspan="2" | Transformer resistance RT (mΩ)  
Line 86: Line 86:
|    
|    
| Installation method   
| Installation method   
| colspan="2" |   F
| colspan="2" | F
|-
|-
| colspan="2" | Transformer reactance XT (mΩ)  
| colspan="2" | Transformer reactance XT (mΩ)  
| 10.64  
| 10.64  
|    
|    
| Phase conductor selected csa (mm2)  
| Phase conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp; 2 x 95
| colspan="2" | 2 x 95
|-
|-
| colspan="2" | 3-phase short-circuit current Ik3 (kA)  
| colspan="2" | 3-phase short-circuit current Ik3 (kA)  
| 21.54  
| 21.54  
| &nbsp;  
| &nbsp;  
| Neutral conductor selected csa (mm2)  
| Neutral conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp; 2 x 95
| colspan="2" | 2 x 95
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C1'''  
| &nbsp;  
| &nbsp;  
| &nbsp;  
| &nbsp;  
| PE conductor selected csa (mm2)  
| PE conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp; 1 x 95
| colspan="2" | 1 x 95
|-
|-
| colspan="2" | Length (m)  
| colspan="2" | Length (m)  
Line 110: Line 110:
| &nbsp;  
| &nbsp;  
| Cable voltage drop ΔU (%)  
| Cable voltage drop ΔU (%)  
| colspan="2" | &nbsp; 0.53
| colspan="2" | 0.53
|-
|-
| colspan="2" | Maximum load current (A)  
| colspan="2" | Maximum load current (A)  
| 860<br>
| 860
| &nbsp;  
| &nbsp;  
| Total voltage drop ΔU (%)  
| Total voltage drop ΔU (%)  
| colspan="2" | &nbsp; 0.65
| colspan="2" | 0.65
|-
|-
| colspan="2" | Type of insulation  
| colspan="2" | Type of insulation  
Line 122: Line 122:
| &nbsp;  
| &nbsp;  
| 3-phase short-circuit current Ik3 (kA)  
| 3-phase short-circuit current Ik3 (kA)  
| colspan="2" | &nbsp; 19.1
| colspan="2" | 19.1
|-
|-
| colspan="2" | Ambient temperature (°C)  
| colspan="2" | Ambient temperature (°C)  
Line 128: Line 128:
| &nbsp;  
| &nbsp;  
| 1-phase-to-earth fault current Id (kA)  
| 1-phase-to-earth fault current Id (kA)  
| colspan="2" | &nbsp; 11.5
| colspan="2" | 11.5
|-
|-
| colspan="2" | Conductor material  
| colspan="2" | Conductor material  
Line 145: Line 145:
| &nbsp;  
| &nbsp;  
| Rated current (A)  
| Rated current (A)  
| colspan="2" | &nbsp; 750
| colspan="2" | 750
|-
|-
| colspan="2" | Number of layers  
| colspan="2" | Number of layers  
Line 152: Line 152:
| valign="top" align="left" bgcolor="#66cc33" colspan="3" | '''Circuit-breaker Q7'''&nbsp;&nbsp;
| valign="top" align="left" bgcolor="#66cc33" colspan="3" | '''Circuit-breaker Q7'''&nbsp;&nbsp;
|-
|-
| colspan="2" | Phase conductor selected csa (mm2)  
| colspan="2" | Phase conductor selected csa (mm<sup>2</sup>)  
| 2 x 240  
| 2 x 240  
| &nbsp;  
| &nbsp;  
Line 158: Line 158:
| colspan="2" | 255
| colspan="2" | 255
|-
|-
| colspan="2" | Neutral conductor selected csa (mm2)  
| colspan="2" | Neutral conductor selected csa (mm<sup>2</sup>)  
| 2 x 240  
| 2 x 240  
| &nbsp;  
| &nbsp;  
| Type  
| Type  
| colspan="2" | &nbsp; Compact
| colspan="2" | Compact
|-
|-
| colspan="2" | PE conductor selected csa (mm2)  
| colspan="2" | PE conductor selected csa (mm<sup>2</sup>)  
| 1 x 120  
| 1 x 120  
| &nbsp;  
| &nbsp;  
| Reference  
| Reference  
| colspan="2" | &nbsp; NSX400F
| colspan="2" | NSX400F
|-
|-
| colspan="2" | Voltage drop ΔU (%)  
| colspan="2" | Voltage drop ΔU (%)  
Line 174: Line 174:
| &nbsp;  
| &nbsp;  
| Rated current (A)  
| Rated current (A)  
| colspan="2" | &nbsp; 400
| colspan="2" | 400
|-
|-
| colspan="2" | 3-phase short-circuit current Ik3 (kA)  
| colspan="2" | 3-phase short-circuit current Ik3 (kA)  
Line 180: Line 180:
| &nbsp;  
| &nbsp;  
| Number of poles and protected poles  
| Number of poles and protected poles  
| colspan="2" | &nbsp; 3P3d
| colspan="2" | 3P3d
|-
|-
| colspan="2" | Courant de défaut phase-terre Id (kA)  
| colspan="2" | Courant de défaut phase-terre Id (kA)  
Line 186: Line 186:
| &nbsp;  
| &nbsp;  
| Tripping unit  
| Tripping unit  
| colspan="2" | &nbsp;Micrologic 2.3
| colspan="2" | Micrologic 2.3
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit-breaker Q1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit-breaker Q1'''  
Line 215: Line 215:
| &nbsp;  
| &nbsp;  
| Maximum load current (A)  
| Maximum load current (A)  
| colspan="2" | &nbsp; 255
| colspan="2" | 255
|-
|-
| colspan="2" | Number of poles and protected poles  
| colspan="2" | Number of poles and protected poles  
Line 221: Line 221:
| &nbsp;  
| &nbsp;  
| Type of insulation  
| Type of insulation  
| colspan="2" | &nbsp; PVC
| colspan="2" | PVC
|-
|-
| colspan="2" | Tripping unit  
| colspan="2" | Tripping unit  
Line 227: Line 227:
| &nbsp;  
| &nbsp;  
| Ambient temperature (°C)  
| Ambient temperature (°C)  
| colspan="2" | &nbsp; 30
| colspan="2" | 30
|-
|-
| colspan="2" | Overload trip Ir (A)  
| colspan="2" | Overload trip Ir (A)  
Line 233: Line 233:
| &nbsp;  
| &nbsp;  
| Conductor material  
| Conductor material  
| colspan="2" | &nbsp;Copper&nbsp;
| colspan="2" | Copper&nbsp;
|-
|-
| colspan="2" | Short-delay trip Im / Isd (A)  
| colspan="2" | Short-delay trip Im / Isd (A)  
Line 239: Line 239:
| &nbsp;  
| &nbsp;  
| Single-core or multi-core cable  
| Single-core or multi-core cable  
| colspan="2" | &nbsp; Single
| colspan="2" | Single
|-
|-
| colspan="2" | Tripping time tm (ms)  
| colspan="2" | Tripping time tm (ms)  
Line 245: Line 245:
| &nbsp;  
| &nbsp;  
| Installation method  
| Installation method  
| colspan="2" | &nbsp; F
| colspan="2" | F
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Switchboard B2'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Switchboard B2'''  
| &nbsp;  
| &nbsp;  
| &nbsp;  
| &nbsp;  
| Phase conductor selected csa (mm2)  
| Phase conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp; 1 x 95
| colspan="2" | 1 x 95
|-
|-
| colspan="2" | Reference  
| colspan="2" | Reference  
| Linergy 1250  
| Linergy 1250  
| &nbsp;  
| &nbsp;  
| Neutral conductor selected csa (mm2)  
| Neutral conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp;-&nbsp;
| colspan="2" | &nbsp;-&nbsp;
|-
|-
Line 262: Line 262:
| 1050  
| 1050  
| &nbsp;  
| &nbsp;  
| PE conductor selected csa (mm2)  
| PE conductor selected csa (mm<sup>2</sup>)  
| colspan="2" | &nbsp; 1 x 50
| colspan="2" | 1 x 50
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit breaker Q3'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit breaker Q3'''  
Line 269: Line 269:
| &nbsp;  
| &nbsp;  
| Cable voltage drop ΔU (%)  
| Cable voltage drop ΔU (%)  
| colspan="2" | &nbsp; 0.14
| colspan="2" | 0.14
|-
|-
| colspan="2" | Load current (A)  
| colspan="2" | Load current (A)  
Line 275: Line 275:
| &nbsp;  
| &nbsp;  
| Total voltage drop ΔU (%)  
| Total voltage drop ΔU (%)  
| colspan="2" | &nbsp; 0.79
| colspan="2" | 0.79
|-
|-
| colspan="2" | Type  
| colspan="2" | Type  
Line 281: Line 281:
| &nbsp;  
| &nbsp;  
| 3-phase short-circuit current Ik3 (kA)  
| 3-phase short-circuit current Ik3 (kA)  
| colspan="2" | &nbsp; 18.0
| colspan="2" | 18.0
|-
|-
| colspan="2" | Reference  
| colspan="2" | Reference  
Line 287: Line 287:
| &nbsp;  
| &nbsp;  
| 1-phase-to-earth fault current Id (kA)  
| 1-phase-to-earth fault current Id (kA)  
| colspan="2" | &nbsp; 10.0
| colspan="2" | 10.0
|-
|-
| colspan="2" | Rated current (A)  
| colspan="2" | Rated current (A)  
Line 294: Line 294:
| colspan="3" | &nbsp;
| colspan="3" | &nbsp;
|}
|}
'''''Fig. G66:'''''<i>&nbsp;Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)</i>  
'''''Fig. G66:'''''<i>&nbsp;Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)</i>  



Revision as of 09:50, 28 January 2010

Worked example of cable calculation

(see Fig. G65)
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.
The single-line diagram is shown in Figure G65 below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G66. This study was carried out with Ecodial 3.4 software (a Schneider Electric product).
This is followed by the same calculations carried out by the simplified method described in this guide.



FigG65.jpg
























































Fig. G65: Example of single-line diagram


Calculation using software Ecodial 3.3


 

General network characteristics    Number of poles and protected poles 4P4d
Earthing system TN-S    Tripping unit Micrologic 2.3 
Neutral distributed No    Overload trip Ir (A) 510
Voltage (V) 400   Short-delay trip Im / Isd (A) 5100
Frequency (Hz) 50     Cable C3
Upstream fault level (MVA) 500   Length 20
Resistance of MV network (mΩ) 0.0351   Maximum load current (A) 509
Reactance of MV network (mΩ) 0.351   Type of insulation PVC
Transformer T1     Ambient temperature (°C) 30
Rating (kVA) 630   Conductor material Copper
Short-circuit impedance voltage (%) 4   Single-core or multi-core cable Single
Transformer resistance RT (mΩ) 3.472   Installation method  F
Transformer reactance XT (mΩ) 10.64   Phase conductor selected csa (mm2) 2 x 95
3-phase short-circuit current Ik3 (kA) 21.54   Neutral conductor selected csa (mm2) 2 x 95
Cable C1     PE conductor selected csa (mm2) 1 x 95
Length (m) 5   Cable voltage drop ΔU (%) 0.53
Maximum load current (A) 860   Total voltage drop ΔU (%) 0.65
Type of insulation PVC   3-phase short-circuit current Ik3 (kA) 19.1
Ambient temperature (°C) 30   1-phase-to-earth fault current Id (kA) 11.5
Conductor material Copper   Switchboard B6  
Single-core or multi-core cable Single   Reference Linergy 800
Installation method F   Rated current (A) 750
Number of layers 1   Circuit-breaker Q7  
Phase conductor selected csa (mm2) 2 x 240    Load current (A) 255
Neutral conductor selected csa (mm2) 2 x 240   Type Compact
PE conductor selected csa (mm2) 1 x 120   Reference NSX400F
Voltage drop ΔU (%) 0.122   Rated current (A) 400
3-phase short-circuit current Ik3 (kA) 21.5   Number of poles and protected poles 3P3d
Courant de défaut phase-terre Id (kA) 15.9   Tripping unit Micrologic 2.3
Circuit-breaker Q1     Overload trip Ir (A) 258  
Load current (A) 860   Short-delay trip Im / Isd (A)   2576
Type Compact   Cable C7  
Reference NS1000N   Length 5
Rated current (A) 1000   Maximum load current (A) 255
Number of poles and protected poles 4P4d   Type of insulation PVC
Tripping unit Micrologic 5.0   Ambient temperature (°C) 30
Overload trip Ir (A) 900   Conductor material Copper 
Short-delay trip Im / Isd (A) 9000   Single-core or multi-core cable Single
Tripping time tm (ms) 50   Installation method F
Switchboard B2     Phase conductor selected csa (mm2) 1 x 95
Reference Linergy 1250   Neutral conductor selected csa (mm2)  - 
Rated current (A) 1050   PE conductor selected csa (mm2) 1 x 50
Circuit breaker Q3     Cable voltage drop ΔU (%) 0.14
Load current (A) 509   Total voltage drop ΔU (%) 0.79
Type Compact   3-phase short-circuit current Ik3 (kA) 18.0
Reference NSX630F   1-phase-to-earth fault current Id (kA) 10.0
Rated current (A) 630    

Fig. G66: Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)


The same calculation using the simplified method recommended in this guide

  • Dimensioning circuit C1

The MV/LV 630 kVA transformer has a rated no-load voltage of 420 V. Circuit C1 must be suitable for a current of: [math]\displaystyle{ I_B=\frac{630 \times 10^3}{\sqrt 3 \times 420}=866 A }[/math] per phase

Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 433A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 240mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are: [math]\displaystyle{ R=\frac{22.5 \times 5}{240\times 2}=0.23 m\Omega }[/math]  (cable resistance: 22.5 mΩ.mm2/m)

X = 0,08 x 5 = 0,4 mΩ (cable reactance: 0.08 mΩ/m)

  • Dimensioning circuit C3

Circuit C3 supplies two 150kW loads with cos φ = 0.85, so the total load current is:  [math]\displaystyle{ I_B=\frac{300 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=509 A }[/math]

Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:
[math]\displaystyle{ R=\frac{22.5\times 20}{95\times 2}=2.37 m\Omega }[/math]

[math]\displaystyle{ X = 0.8 \times 20 = 1.6m \Omega }[/math]

  • Dimensioning circuit C7

Circuit C7 supplies one 150kW load with cos φ = 0.85, so the total load current is:  [math]\displaystyle{ I_B=\frac{150 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=255 A }[/math]

One single-core PVC-insulated copper cable will be used for each phase. The cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance for a length of 20 metres is:
[math]\displaystyle{ R=\frac{22.5\times 5}{95}=1.18m\Omega }[/math]  (cable resistance: 22.5 mΩ.mm2/m)

[math]\displaystyle{ X = 0.8 \times 5 = 0.4m\Omega }[/math](cable reactance: 0.08 mΩ/m) 

  • Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 (seeFig. G67)


Circuit components R (mΩ) X (mΩ) Z (mΩ) Ikmax (kA)
Upstream MV network, 500MVA fault level (see Fig. G34) 0,035 0,351      
Transformer 630kVA, 4% (see Fig. G35) 2.9 10.8      
Cable C1 0.23 0.4      
Sub-total 3.16 11.55 11.97 20.2
Cable C3 2.37 1.6    
Sub-total 5.53 13.15 14.26 17
Cable C7 1.18 0.4      
Sub-total 6.71 13.55 15.12 16

Fig. G67: Example of short-circuit current evaluation


  • The protective conductor

When using the adiabatic method, the minimum c.s.a. for the protective earth conductor (PE) can be calculated by the formula given in Figure G58: [math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t}}{k} }[/math] For circuit C1, I = 20.2kA and k = 143.
t is the maximum operating time of the MV protection, e.g. 0.5s
This gives: [math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t}}{k}=\frac {20200 \times \sqrt {0.5}}{143}=100 mm^2 }[/math] A single 120 mm2 conductor is therefore largely sufficient, provided that it also satisfies the requirements for indirect contact protection (i.e. that its impedance is sufficiently low).
Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm2, the PE conductor minimum c.s.a. will be Sph / 2. Then, for circuit C3, the PE conductor will be 95mm2, and for circuit C7, the PE conductor will be 50mm2.

  • Protection against indirect-contact hazards

For circuit C3 of Figure G65, Figures F41 andF40, or the formula given page F25 may be used for a 3-phase 4-wire circuit.
The maximum permitted length of the circuit is given by: [math]\displaystyle{ L_{max}=\frac{0.8 \times U_0 \times s_{ph}}{\rho \times \left ( 1 + m \right )\times I_a } }[/math] [math]\displaystyle{ L_{max}=\frac{0.8 \times 2302 \times 95}{22.5 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 }=75m }[/math]

(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit-breaker operates).
The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.

  • Voltage drop

The voltage drop is calculated using the data given inFigure G28, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).
The results are summarized on figure G68:



c.s.a. C1 C3 C7
2 x 240mm² 2 x 95mm² 1 x 95mm²
∆U per conductor
(V/A/km) see Fig. G28
0.21 0.42 0.42
Load current (A) 866 509 255
Length (m) 5 20 5
Voltage drop (V) 0.45 2.1 0.53
Voltage drop (%) 0.11 0.53 0.13

Fig. G68: Voltage drop introduced by the different cables


The total voltage drop at the end of cable C7 is then: 0.77%.


Share