Chapter G

Sizing and protection of conductors


Worked example of cable calculation: Difference between revisions

From Electrical Installation Guide
Home > Sizing and protection of conductors > Worked example of cable calculation
No edit summary
(Undo revision 28518 by LMischler (talk))
Tag: Undo
 
(42 intermediate revisions by 8 users not shown)
Line 1: Line 1:
==== Worked example of cable calculation  ====
{{Menu_Sizing_and_protection_of_conductors}}__TOC__
== Worked example of cable calculation  ==


(see '''Fig. G65''')<br>The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.<br>The single-line diagram is shown in '''Figure G65 '''below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G66. This study was carried out with Ecodial 3.4 software (a Schneider Electric product).<br>This is followed by the same calculations carried out by the simplified method described in this guide.
(see {{FigRef|G69}})


----
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.


<br>[[Image:FigG65.jpg|left]] <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>'''''Fig. G65:'''''<i>&nbsp;Example of single-line diagram</i>
The single-line diagram is shown in {{FigureRef|G69}} below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on {{FigureRef|G70}}. This study was carried out with [http://www.schneider-electric.com/products/ww/en/5100-software/5110-electrical-design-software/61013-ecodial-advanced-calculation Ecodial] (a Schneider Electric software).


----
This is followed by the same calculations carried out by the simplified method described in this guide.


'''Calculation using software Ecodial 3.3'''<br>
{{FigImage|DB431011_EN|svg|G69|Example of single-line diagram}}


----
== Calculation using software Ecodial ==


&nbsp;
{{tb-start|id=Tab1243|num=G70|title=Partial results of calculation carried out with Ecodial software (Schneider Electric). The calculation is performed according to Cenelec TR50480 and IEC 60909|cols=5}}
 
{| class="wikitable"
{| style="width: 786px; height: 970px" cellspacing="1" cellpadding="1" width="786" border="1"
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''General network characteristics&nbsp;''' &nbsp;
! colspan="2" | General network characteristics  
| rowspan="47" | &nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp;&nbsp;<br>&nbsp; <br>&nbsp;
| rowspan="51" |
| valign="top" align="left" | Number of poles and protected poles
! colspan="2" |Cable C3
| valign="top" colspan="2" | 4P4d
|-
|-
| colspan="2" | Earthing system  
| Earthing system  
| TN-S  
| TN-S  
| Tripping unit
|Length
| colspan="2" | Micrologic&nbsp;2.3&nbsp;
|20
|-
|-
| colspan="2" | Neutral distributed  
| Neutral distributed  
| No  
| No  
| Overload trip Ir (A)  
|Maximum load current (A)
| colspan="2" | 510
|518
|-
|-
| colspan="2" | Voltage (V)  
| Voltage (V)  
| 400  
| 400  
| Short-delay trip Im / Isd (A)
|Type of insulation
| colspan="2" | 5100
|PVC
|-
|-
| colspan="2" | Frequency (Hz)  
| Frequency (Hz)  
| 50  
| 50  
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Cable C3'''
|Ambient temperature (°C)
|30
|-
|-
| colspan="2" | Upstream fault level (MVA)  
| Upstream fault level (MVA)  
| 500  
| 500  
| Length
|Conductor material
| colspan="2" | 20
|Copper
|-
|-
| colspan="2" | Resistance of MV network (mΩ)  
| Resistance of MV network (mΩ)  
| 0.0351
| 0.035
| Maximum load current (A)
|Single-core or multi-core cable
| colspan="2" | 509
|Single
|-
|-
| colspan="2" | Reactance of MV network (mΩ)  
| Reactance of MV network (mΩ)  
| 0.351  
| 0.351  
| Type of insulation
|Installation method
| colspan="2" | PVC
|F31
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Transformer T1''' &nbsp;
! colspan="2" | Transformer T1  
| Ambient temperature (°C)  
|Phase conductor selected csa (mm2)
| colspan="2" | 30
|2 x 120
|-
|-
| colspan="2" | Rating (kVA)  
| Rating (kVA)  
| 630  
| 630  
| Conductor material
|Neutral conductor selected csa (mm2)
| colspan="2" | Copper
|2 x 120
|-
|-
| colspan="2" | Short-circuit impedance voltage (%)  
| Short-circuit impedance voltage (%)  
| 4  
| 4  
| Single-core or multi-core cable
|PE conductor selected csa (mm2)
| colspan="2" | Single
|1 x 120
|-
|-
| colspan="2" | Transformer resistance RT ()  
| Load-losses (PkrT) (W)  
| 3.472
| 7100
| Installation method&nbsp;
|Cable voltage drop ΔU (%)
| colspan="2" | F
|0.459
|-
|-
| colspan="2" | Transformer reactance XT ()  
| No-load voltage (V)  
| 10.64
| 420
| Phase conductor selected csa (mm<sup>2</sup>)  
|Total voltage drop ΔU (%)
| colspan="2" | 2 x 95
|0.583
|-
|-
| colspan="2" | 3-phase short-circuit current Ik<sub>3</sub> (kA)  
| Rated voltage (V)
| 21.54
| 400
| Neutral conductor selected csa (mm<sup>2</sup>)
|3-phase short-circuit current Ik3 (kA)
| colspan="2" | 2 x 95
|21.5
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Cable C1''' &nbsp;
! colspan="2" | Cable C1  
| PE conductor selected csa (mm<sup>2</sup>)  
|1-phase-to-earth fault current Ief (kA)
| colspan="2" | 1 x 95
|18
|-
|-
| colspan="2" | Length (m)  
| Length (m)  
| 5  
| 5  
| Cable voltage drop ΔU (%)
! colspan="2" |Distribution Board B6
| colspan="2" | 0.53
|-
|-
| colspan="2" | Maximum load current (A)  
| Maximum load current (A)  
| 860
| 909
| Total voltage drop ΔU (%)
|Reference
| colspan="2" | 0.65
|Prisma Plus G
|-
|-
| colspan="2" | Type of insulation  
| Type of insulation  
| PVC  
| PVC  
| 3-phase short-circuit current Ik<sub>3</sub> (kA)  
|Rated current (A)
| colspan="2" | 19.1
|630
|-
|-
| colspan="2" | Ambient temperature (°C)  
| Ambient temperature (°C)  
| 30  
| 30  
| 1-phase-to-earth fault current Id (kA)
! colspan="2" |Circuit breaker Q7
| colspan="2" | 11.5
|-
|-
| colspan="2" | Conductor material  
| Conductor material  
| Copper  
| Copper  
| bgcolor="#0099cc" colspan="3" | '''Switchboard B6&nbsp;&nbsp;'''
|Load current (A)
|238
|-
|-
| colspan="2" | Single-core or multi-core cable  
| Single-core or multi-core cable  
| Single  
| Single  
| valign="top" align="left" | Reference
|Type
| colspan="2" | Linergy 800
|Compact
|-
|-
| colspan="2" | Installation method  
| Installation method  
| F
| 31F
| Rated current (A)
|Reference
| colspan="2" | 750
|NSX250B
|-
|-
| colspan="2" | Number of layers  
| Number of layers  
| 1  
| 1  
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Circuit-breaker Q7'''&nbsp;&nbsp;
|Rated current (A)
|250
|-
|-
| colspan="2" | Phase conductor selected csa (mm<sup>2</sup>)  
| Phase conductor selected csa (mm²)  
| 2 x 240  
| 2 x 240  
| valign="top" align="left" | &nbsp;Load current (A)
|Number of poles and protected poles
| colspan="2" | 255
|3P3d
|-
|-
| colspan="2" | Neutral conductor selected csa (mm<sup>2</sup>)  
| Neutral conductor selected csa (mm²)  
| 2 x 240  
| 2 x 240  
| Type
|Tripping unit
| colspan="2" | Compact
|Micrologic 5.2 E
|-
|-
| colspan="2" | PE conductor selected csa (mm<sup>2</sup>)  
| PE conductor selected csa (mm²)  
| 1 x 120
| 1 x 240
| Reference
|Overload trip Ir (A)
| colspan="2" | NSX400F
|238
|-
|-
| colspan="2" | Voltage drop ΔU (%)  
| Voltage drop ΔU (%)  
| 0.122
| 0.124
| Rated current (A)  
|Short-delay trip Im / Isd (A)
| colspan="2" | 400
|2380
|-
|-
| colspan="2" | 3-phase short-circuit current Ik<sub>3</sub> (kA)  
| 3-phase short-circuit current Ik3 (kA)  
| 21.5  
| 21.5  
| Number of poles and protected poles
! colspan="2" |Cable C7
| colspan="2" | 3P3d
|-
|-
| colspan="2" | Courant de défaut phase-terre Id (kA)  
| Earth fault current Ief (kA)  
| 15.9
| 18
| Tripping unit
|Length
| colspan="2" | Micrologic 2.3
|5
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Circuit-breaker Q1''' &nbsp;
! colspan="2" | Circuit breaker Q1  
| Overload trip Ir (A)  
|Maximum load current (A)
| colspan="2" | 258&nbsp;&nbsp;
|238
|-
|-
| colspan="2" | Load current (A)  
| Load current (A)  
| 860
| 909
| Short-delay trip Im / Isd (A)
|Type of insulation
| colspan="2" | 2576
|PVC
|-
|-
| colspan="2" | Type  
| Type  
| Compact
| Masterpact
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Cable C7&nbsp;&nbsp;'''
|Ambient temperature (°C)
|30
|-
|-
| colspan="2" | Reference  
| Reference  
| NS1000N
| MTZ2 10N1
| valign="top" align="left" | Length
|Conductor material
| colspan="2" | 5
|Copper
|-
|-
| colspan="2" | Rated current (A)  
| Rated current (A)  
| 1000  
| 1000  
| Maximum load current (A)
|Single-core or multi-core cable
| colspan="2" | 255
|Single
|-
|-
| colspan="2" | Number of poles and protected poles  
| Number of poles and protected poles  
| 4P4d  
| 4P4d  
| Type of insulation
|Installation method
| colspan="2" | PVC
|F31
|-
|-
| colspan="2" | Tripping unit  
| Tripping unit  
| Micrologic 5.0
| Micrologic 5.0X
| Ambient temperature (°C)  
|Phase conductor selected csa (mm²)
| colspan="2" | 30
|1 x 95
|-
|-
| colspan="2" | Overload trip Ir (A)  
| Overload trip Ir (A)  
| 900
| 920
| Conductor material
|Neutral conductor selected csa (mm²)
| colspan="2" | Copper&nbsp;
|1 x 95
|-
|-
| colspan="2" | Short-delay trip Im / Isd (A)  
| Short-delay trip Im / Isd (A)  
| 9000
| 9200
| Single-core or multi-core cable
|PE conductor selected csa (mm²)
| colspan="2" | Single
|1 x 95
|-
|-
| colspan="2" | Tripping time tm (ms)  
| Tripping time tm (ms)  
| 50  
| 50  
| Installation method
|Cable voltage drop ΔU (%)
| colspan="2" | F
|0.131
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Switchboard B2''' &nbsp;
! colspan="2" | Switchboard B1
| Phase conductor selected csa (mm<sup>2</sup>)  
|Total voltage drop ΔU (%)
| colspan="2" | 1 x 95
|0.714
|-
|-
| colspan="2" | Reference  
| Reference  
| Linergy 1250
| Prisma Plus P
| Neutral conductor selected csa (mm<sup>2</sup>)  
|3-phase short-circuit current Ik3 (kA)
| colspan="2" | &nbsp;-&nbsp;
|18.0
|-
|-
| colspan="2" | Rated current (A)  
| Rated current (A)  
| 1050
| 1000
| PE conductor selected csa (mm<sup>2</sup>)  
|1-phase-to-earth fault current Ief (kA)
| colspan="2" | 1 x 50
|14.2
|-
|-
| valign="top" align="left" bgcolor="#0099cc" colspan="3" | '''Circuit breaker Q3''' &nbsp;
! colspan="2" | Circuit breaker Q3  
| Cable voltage drop ΔU (%)
| rowspan="9" colspan="2" |
| colspan="2" | 0.14
|-
|-
| colspan="2" | Load current (A)  
| Load current (A)  
| 509
| 518
| Total voltage drop ΔU (%)
| colspan="2" | 0.79
|-
|-
| colspan="2" | Type  
| Type  
| Compact  
| Compact  
| 3-phase short-circuit current Ik<sub>3</sub> (kA)
| colspan="2" | 18.0
|-
|-
| colspan="2" | Reference  
| Reference  
| NSX630F  
| NSX630F  
| 1-phase-to-earth fault current Id (kA)
| colspan="2" | 10.0
|-
|-
| colspan="2" | Rated current (A)  
| Rated current (A)  
| 630  
| 630  
| colspan="3" | &nbsp;
|-
|Number of poles and protected poles
|4P4d
|-
|Tripping unit
|Micrologic 5.3 E
|-
|Overload trip Ir (A)
|518
|-
|Short-delay trip Im / Isd (A)
|1036
|}
|}


'''''Fig. G66:'''''<i>&nbsp;Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)</i>  
== The same calculation using the simplified method recommended in this guide ==
 
=== Dimensioning circuit C1 ===
 
The MV/LV 630 kVA transformer has a rated voltage of 400 V. Circuit C1 must be suitable for a current of:
 
<math>I_b=\frac{630 \times 10^3}{\sqrt 3 \times 400}=909\,A</math> per phase
 
Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method 31F.
 
Each conductor will therefore carry 455 A. [[Recommended simplified approach for cable sizing#Tab1193|{{FigureRef|G21}}]] indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 240 mm².
 
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:
 
<math>R=\frac{18.51 \times 5}{240\times 2}=0.19\,m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m at 20 °C)
 
<math>X = 0.08 / 2 \times 5 = 0.2\,m\Omega</math> (cable reactance: 0.08 mΩ/m, 2 cables in parallel)


----
=== Dimensioning circuit C3 ===


===== The same calculation using the simplified method recommended in this guide  =====
Circuit C3 supplies two loads, in total 310 kW with cos φ = 0.85, so the total load current is:


*'''Dimensioning circuit C1'''
<math>I_b=\frac{310 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=526\,A</math>


The MV/LV 630 kVA transformer has a rated no-load voltage of 420 V. Circuit C1 must be suitable for a current of: <math>I_B=\frac{630 \times 10^3}{\sqrt 3 \times 420}=866 A</math>&nbsp;per phase  
Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.


Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method F.<br>Each conductor will therefore carry 433A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 240mm².<br>The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:&nbsp;<math>R=\frac{22.5 \times 5}{240\times 2}=0.23 m\Omega</math>&nbsp; (cable resistance: 22.5 mΩ.mm<sup>2</sup>/m)
Each conductor will therefore carry 263 A. [[Recommended simplified approach for cable sizing#Tab1193|{{FigureRef|G21}}]] indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 120 mm².


X = 0,08 x 5 = 0,4 mΩ (cable reactance: 0.08 mΩ/m) <br><br>
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:


*'''Dimensioning circuit C3'''
<math>R=\frac{18.51\times 20}{120\times 2}=1.54\,m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m at 20 °C)


Circuit C3 supplies two 150kW loads with cos φ = 0.85, so the total load current is:&nbsp; <math>I_B=\frac{300 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=509 A</math>  
<math>X = 0.08/ 2 \times 20 = 1.6\,m\Omega</math> (cable reactance: 0.08 mΩ/m, 2 cables in parallel)


Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.<br>Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm<sup>2</sup>.<br>The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:<br><math>R=\frac{22.5\times 20}{95\times 2}=2.37 m\Omega</math>
=== Dimensioning circuit C7 ===


<math>X = 0.8 \times 20 = 1.6m \Omega</math> <br><br>
Circuit C7 supplies one 140kW load with cos φ = 0.85, so the total load current is:


*'''Dimensioning circuit C7'''
<math>I_b=\frac{140 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=238\,A</math>


Circuit C7 supplies one 150kW load with cos φ = 0.85, so the total load current is:&nbsp; <math>I_B=\frac{150 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=255 A</math>
One single-core PVC-insulated copper cable will be used for each phase.  


One single-core PVC-insulated copper cable will be used for each phase. The cables will be laid on cable trays according to method F.<br>Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm<sup>2</sup>.<br>The resistance and the inductive reactance for a length of 20 metres is:<br><math>R=\frac{22.5\times 5}{95}=1.18m\Omega</math>&nbsp; (cable resistance: 22.5 mΩ.mm<sup>2</sup>/m)
The cables will be laid on cable trays according to method F.


<math>X = 0.8 \times 5 = 0.4m\Omega</math>(cable reactance: 0.08 mΩ/m)&nbsp; <br><br>
Each conductor will therefore carry 238 A. [[Recommended simplified approach for cable sizing#Tab1193|{{FigureRef|G21}}]] indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 95 mm².


*'''Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 (see Fig. G67)'''
The resistance and the inductive reactance for a length of 5 metres is:


----
<math>R=\frac{18.51\times 5}{95}=0.97\,m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m)


<br>
<math>X = 0.08 \times 5 = 0.4\,m\Omega</math> (cable reactance: 0.08 mΩ/m)


{| style="width: 798px; height: 136px" cellspacing="1" cellpadding="1" width="798" border="1"
=== Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 ===
 
(see {{FigRef|G71}})
 
{{tb-start|id=Tab1244|num=G71|title=Example of short-circuit current evaluation|cols=5}}
{| class="wikitable"
|-
|-
| bgcolor="#0099cc" | '''Circuit components'''
! Circuit components  
| bgcolor="#0099cc" | '''R (mΩ)'''
! R (mΩ)  
| bgcolor="#0099cc" | '''X (mΩ)'''
! X (mΩ)  
| bgcolor="#0099cc" | '''Z (mΩ)'''
! Z (mΩ)  
| bgcolor="#0099cc" | '''Ikmax (kA)'''
! Ikmax (kA)
|-
|-
| Upstream MV network, 500MVA fault level (see Fig. G34)  
| Upstream MV network, 500MVA fault level (see {{FigRef|G36}})  
| valign="top" | 0,035  
| 0,035  
| valign="top" | 0,351  
| 0,351  
| &nbsp;&nbsp;
|  
| &nbsp;&nbsp;
|
|-
|-
| Transformer 630kVA, 4% (see Fig. G35)  
| Transformer 630kVA, 4% (see {{FigRef|G37}})  
| valign="top" | 2.9
| 2.90
| valign="top" | 10.8  
| 10.8  
| &nbsp;&nbsp;
|  
| &nbsp;&nbsp;
|  
|-
|-
| Cable C1  
| Cable C1  
| 0.23
| 0.19
| 0.4
| 0.20
| &nbsp;&nbsp;
|
| &nbsp;&nbsp;
|  
|-
|-
| '''Sub-total'''  
| {{tb-HC2}} | '''Sub-total'''
| 3.16
| {{tb-HC2}} | '''3.13'''
| 11.55
| {{tb-HC2}} | '''11.4'''
| 11.97
| {{tb-HC2}} | '''11.8'''
| 20.2
| {{tb-HC2}} | '''21'''
|-
|-
| Cable C3  
| Cable C3  
| 2.37
| 1.54
| 1.6
| 0.80
| &nbsp;
|  
| &nbsp;
|  
|-
|-
| '''Sub-total'''  
| {{tb-HC2}} | '''Sub-total'''  
| 5.53
| {{tb-HC2}} | '''4.67'''
| 13.15  
| {{tb-HC2}} | '''12.15'''
| 14.26
| {{tb-HC2}} | '''13.0'''
| 17
| {{tb-HC2}} | '''19'''
|-
|-
| Cable C7  
| Cable C7  
| 1.18
| 0.97
| 0.4
| 0.40
| &nbsp;&nbsp;
|  
| &nbsp;&nbsp;
|  
|-
|-
| '''Sub-total'''  
| {{tb-HC2}} | '''Sub-total'''
| 6.71
| {{tb-HC2}} | '''5.64 '''
| 13.55  
| {{tb-HC2}} | '''12.55'''
| 15.12
| {{tb-HC2}} | '''13.8'''
| 16
| {{tb-HC2}} | '''18'''
|}
|}


'''''Fig. G67:'''''<i>&nbsp;Example of short-circuit current evaluation</i>  
=== The protective conductor ===
 
Generally, for circuits with phase conductor c.s.a. Sph &ge; 50 mm², the PE conductor minimum c.s.a. will be Sph / 2.
 
The proposed c.s.a. of the PE conductor will thus be 1x240 mm² for circuit C1, 1x120 mm² for C3, and 1x50 mm² for C7.
 
The minimum c.s.a. for the protective earth conductor (PE) can be calculated using the adiabatic method (formula given in [[Sizing of protective earthing conductor#Tab1219|{{FigRef|G59}}]]):
 
<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}</math>  
 
For circuit C1, I = 21 kA and k = 143.
 
t is the maximum operating time of the MV protection, e.g. 0.5 s
 
This gives:


----
<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}=\frac {21000 \times \sqrt {0.5} }{143}=104\,mm^2</math>


*'''The protective conductor'''
A single 120 mm² conductor is therefore largely sufficient, provided that it also satisfies the requirements for fault protection (indirect contact), i.e. that its impedance is sufficiently low.


When using the adiabatic method, the minimum c.s.a. for the protective earth conductor (PE) can be calculated by the formula given in Figure G58: <math>S_{PE}=\frac{\sqrt {I^2 . t}}{k}</math> For circuit C1, I = 20.2kA and k = 143.<br>t is the maximum operating time of the MV protection, e.g. 0.5s<br>This gives: <math>S_{PE}=\frac{\sqrt {I^2 . t}}{k}=\frac {20200 \times \sqrt {0.5}}{143}=100 mm^2</math> <br>A single 120 mm<sup>2</sup> conductor is therefore largely sufficient, provided that it also satisfies the requirements for indirect contact protection (i.e. that its impedance is sufficiently low).<br>Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm<sup>2</sup>, the PE conductor minimum c.s.a. will be Sph / 2. Then, for circuit C3, the PE conductor will be 95mm2, and for circuit C7, the PE conductor will be 50mm<sup>2</sup>.
=== Fault protection (protection against indirect contact) ===


*'''Protection against indirect-contact hazards'''
For TN earthing system, the minimum value of Lmax is given by phase to earth fault (highest impedance).  [[TN system - Protection against indirect contact#Conventional_method|Conventional_method]] details the calculation of typical phase-to-earth fault and maximum circuit length calculation.


For circuit C3 of Figure G65, Figures F41 and F40, or the formula given '''page F25 '''may be used for a 3-phase 4-wire circuit.<br>The maximum permitted length of the circuit is given by: <math>L_{max}=\frac{0.8 \times U_0 \times s_{ph}}{\rho \times \left ( 1 + m \right )\times I_a }</math> <math>L_{max}=\frac{0.8 \times 2302 \times 95}{22.5 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 }=75m</math>
In this example (3-phase 4-wire circuit), the maximum permitted length of the circuit is given by the formula:


(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit-breaker operates).<br>The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.
<math>L_{max}=\frac{0.8 \times U_0 \times S_{ph} }{\rho \times \left ( 1 + m \right )\times I_a }</math>


*'''Voltage drop'''
where m = Sph / SPE


The voltage drop is calculated using the data given in '''Figure G28''', for balanced three-phase circuits, motor power normal service (cos φ = 0.8).<br>The results are summarized on '''figure G68:'''<br>
For circuit C3, this gives:


----
<math>L_{max}=\frac{0.8 \times 230 \times 2 \times 120}{23.7 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 } = 90\,m</math>


<br>
(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit breaker operates).


{| style="width: 786px; height: 108px" cellspacing="1" cellpadding="1" width="786" border="1"
The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.
 
=== Voltage drop ===
The voltage drop is calculated using the data given in [[Calculation of voltage drop in steady load conditions#Tab1200|{{FigureRef|G30}}]], for balanced three-phase circuits, motor power normal service (cos φ = 0.8).
 
The results are summarized on {{FigRef|G72}}:
 
The total voltage drop at the end of cable C7 is then: '''0.73 %'''.
 
{{tb-start|id=Tab1245|num=G72|title=Voltage drop introduced by the different cables|cols=3}}
{| class="wikitable"
|-
|-
| valign="bottom" width="30%" rowspan="2" | '''c.s.a.'''
!
| bgcolor="#0099cc" | '''C1'''
! C1  
| bgcolor="#0099cc" | '''C3'''
! C3  
| bgcolor="#0099cc" | '''C7'''
! C7
|-
|-
| 2 x 240mm²
| c.s.a.
| 2 x 95mm²
| 2 x 240mm<sup>2</sup>
| 1 x 95mm²
| 2 x 120mm<sup>2</sup>
| 1 x 95mm<sup>2</sup>
|-
|-
| '''∆U per conductor<br>(V/A/km) see Fig. G28'''
| ∆U per conductor&nbsp;(V/A/km)<br>see {{FigRef|G30}}
| valign="top" | 0.21
| 0.22
| valign="top" | 0.42
| 0.36
| valign="top" | 0.42
| 0.43
|-
|-
| '''Load current (A)'''
| Load current (A)  
| 866
| 909
| 509
| 526
| 255
| 238
|-
|-
| '''Length (m)'''
| Length (m)  
| 5  
| 5  
| 20  
| 20  
| 5
| 5
|-
|-
| '''Voltage drop (V)'''
| Voltage drop (V)  
| 0.45
| 0.50
| 2.1
| 1.89
| 0.53
| 0.51
|-
|-
| '''Voltage drop (%)'''
| Voltage drop (%)  
| 0.11
| 0.12
| 0.53
| 0.47
| 0.13
| 0.13
|}
|}
'''''Fig. G68:'''''<i>&nbsp;Voltage drop introduced by the different cables</i>
----
The total voltage drop at the end of cable C7 is then: 0.77%.
----

Latest revision as of 07:37, 18 September 2023

Worked example of cable calculation

(see Fig. G69)

The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.

The single-line diagram is shown in Figure G69 below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G70. This study was carried out with Ecodial (a Schneider Electric software).

This is followed by the same calculations carried out by the simplified method described in this guide.

Fig. G69 – Example of single-line diagram

Calculation using software Ecodial

Fig. G70 – Partial results of calculation carried out with Ecodial software (Schneider Electric). The calculation is performed according to Cenelec TR50480 and IEC 60909
General network characteristics Cable C3
Earthing system TN-S Length 20
Neutral distributed No Maximum load current (A) 518
Voltage (V) 400 Type of insulation PVC
Frequency (Hz) 50 Ambient temperature (°C) 30
Upstream fault level (MVA) 500 Conductor material Copper
Resistance of MV network (mΩ) 0.035 Single-core or multi-core cable Single
Reactance of MV network (mΩ) 0.351 Installation method F31
Transformer T1 Phase conductor selected csa (mm2) 2 x 120
Rating (kVA) 630 Neutral conductor selected csa (mm2) 2 x 120
Short-circuit impedance voltage (%) 4 PE conductor selected csa (mm2) 1 x 120
Load-losses (PkrT) (W) 7100 Cable voltage drop ΔU (%) 0.459
No-load voltage (V) 420 Total voltage drop ΔU (%) 0.583
Rated voltage (V) 400 3-phase short-circuit current Ik3 (kA) 21.5
Cable C1 1-phase-to-earth fault current Ief (kA) 18
Length (m) 5 Distribution Board B6
Maximum load current (A) 909 Reference Prisma Plus G
Type of insulation PVC Rated current (A) 630
Ambient temperature (°C) 30 Circuit breaker Q7
Conductor material Copper Load current (A) 238
Single-core or multi-core cable Single Type Compact
Installation method 31F Reference NSX250B
Number of layers 1 Rated current (A) 250
Phase conductor selected csa (mm²) 2 x 240 Number of poles and protected poles 3P3d
Neutral conductor selected csa (mm²) 2 x 240 Tripping unit Micrologic 5.2 E
PE conductor selected csa (mm²) 1 x 240 Overload trip Ir (A) 238
Voltage drop ΔU (%) 0.124 Short-delay trip Im / Isd (A) 2380
3-phase short-circuit current Ik3 (kA) 21.5 Cable C7
Earth fault current Ief (kA) 18 Length 5
Circuit breaker Q1 Maximum load current (A) 238
Load current (A) 909 Type of insulation PVC
Type Masterpact Ambient temperature (°C) 30
Reference MTZ2 10N1 Conductor material Copper
Rated current (A) 1000 Single-core or multi-core cable Single
Number of poles and protected poles 4P4d Installation method F31
Tripping unit Micrologic 5.0X Phase conductor selected csa (mm²) 1 x 95
Overload trip Ir (A) 920 Neutral conductor selected csa (mm²) 1 x 95
Short-delay trip Im / Isd (A) 9200 PE conductor selected csa (mm²) 1 x 95
Tripping time tm (ms) 50 Cable voltage drop ΔU (%) 0.131
Switchboard B1 Total voltage drop ΔU (%) 0.714
Reference Prisma Plus P 3-phase short-circuit current Ik3 (kA) 18.0
Rated current (A) 1000 1-phase-to-earth fault current Ief (kA) 14.2
Circuit breaker Q3
Load current (A) 518
Type Compact
Reference NSX630F
Rated current (A) 630
Number of poles and protected poles 4P4d
Tripping unit Micrologic 5.3 E
Overload trip Ir (A) 518
Short-delay trip Im / Isd (A) 1036

The same calculation using the simplified method recommended in this guide

Dimensioning circuit C1

The MV/LV 630 kVA transformer has a rated voltage of 400 V. Circuit C1 must be suitable for a current of:

[math]\displaystyle{ I_b=\frac{630 \times 10^3}{\sqrt 3 \times 400}=909\,A }[/math] per phase

Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method 31F.

Each conductor will therefore carry 455 A. Figure G21 indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 240 mm².

The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:

[math]\displaystyle{ R=\frac{18.51 \times 5}{240\times 2}=0.19\,m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m at 20 °C)

[math]\displaystyle{ X = 0.08 / 2 \times 5 = 0.2\,m\Omega }[/math] (cable reactance: 0.08 mΩ/m, 2 cables in parallel)

Dimensioning circuit C3

Circuit C3 supplies two loads, in total 310 kW with cos φ = 0.85, so the total load current is:

[math]\displaystyle{ I_b=\frac{310 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=526\,A }[/math]

Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.

Each conductor will therefore carry 263 A. Figure G21 indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 120 mm².

The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:

[math]\displaystyle{ R=\frac{18.51\times 20}{120\times 2}=1.54\,m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m at 20 °C)

[math]\displaystyle{ X = 0.08/ 2 \times 20 = 1.6\,m\Omega }[/math] (cable reactance: 0.08 mΩ/m, 2 cables in parallel)

Dimensioning circuit C7

Circuit C7 supplies one 140kW load with cos φ = 0.85, so the total load current is:

[math]\displaystyle{ I_b=\frac{140 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=238\,A }[/math]

One single-core PVC-insulated copper cable will be used for each phase.

The cables will be laid on cable trays according to method F.

Each conductor will therefore carry 238 A. Figure G21 indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 95 mm².

The resistance and the inductive reactance for a length of 5 metres is:

[math]\displaystyle{ R=\frac{18.51\times 5}{95}=0.97\,m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m)

[math]\displaystyle{ X = 0.08 \times 5 = 0.4\,m\Omega }[/math] (cable reactance: 0.08 mΩ/m)

Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7

(see Fig. G71)

Fig. G71 – Example of short-circuit current evaluation
Circuit components R (mΩ) X (mΩ) Z (mΩ) Ikmax (kA)
Upstream MV network, 500MVA fault level (see Fig. G36) 0,035 0,351
Transformer 630kVA, 4% (see Fig. G37) 2.90 10.8
Cable C1 0.19 0.20
Sub-total 3.13 11.4 11.8 21
Cable C3 1.54 0.80
Sub-total 4.67 12.15 13.0 19
Cable C7 0.97 0.40
Sub-total 5.64 12.55 13.8 18

The protective conductor

Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm², the PE conductor minimum c.s.a. will be Sph / 2.

The proposed c.s.a. of the PE conductor will thus be 1x240 mm² for circuit C1, 1x120 mm² for C3, and 1x50 mm² for C7.

The minimum c.s.a. for the protective earth conductor (PE) can be calculated using the adiabatic method (formula given in Fig. G59):

[math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t} }{k} }[/math]

For circuit C1, I = 21 kA and k = 143.

t is the maximum operating time of the MV protection, e.g. 0.5 s

This gives:

[math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t} }{k}=\frac {21000 \times \sqrt {0.5} }{143}=104\,mm^2 }[/math]

A single 120 mm² conductor is therefore largely sufficient, provided that it also satisfies the requirements for fault protection (indirect contact), i.e. that its impedance is sufficiently low.

Fault protection (protection against indirect contact)

For TN earthing system, the minimum value of Lmax is given by phase to earth fault (highest impedance). Conventional_method details the calculation of typical phase-to-earth fault and maximum circuit length calculation.

In this example (3-phase 4-wire circuit), the maximum permitted length of the circuit is given by the formula:

[math]\displaystyle{ L_{max}=\frac{0.8 \times U_0 \times S_{ph} }{\rho \times \left ( 1 + m \right )\times I_a } }[/math]

where m = Sph / SPE

For circuit C3, this gives:

[math]\displaystyle{ L_{max}=\frac{0.8 \times 230 \times 2 \times 120}{23.7 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 } = 90\,m }[/math]

(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit breaker operates).

The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.

Voltage drop

The voltage drop is calculated using the data given in Figure G30, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).

The results are summarized on Fig. G72:

The total voltage drop at the end of cable C7 is then: 0.73 %.

Fig. G72 – Voltage drop introduced by the different cables
C1 C3 C7
c.s.a. 2 x 240mm2 2 x 120mm2 1 x 95mm2
∆U per conductor (V/A/km)
see Fig. G30
0.22 0.36 0.43
Load current (A) 909 526 238
Length (m) 5 20 5
Voltage drop (V) 0.50 1.89 0.51
Voltage drop (%) 0.12 0.47 0.13
Share