Definition of harmonics: Difference between revisions
m (format) |
(corrected formula format + phi) |
||
Line 23: | Line 23: | ||
'''('''see '''Fig. M13)''' | '''('''see '''Fig. M13)''' | ||
When the voltage is sinusoidal or virtually sinusoidal, it may be said that | When the voltage is sinusoidal or virtually sinusoidal, it may be said that: | ||
<math>PF=\frac{P}{S}=\frac{U_1.i_1.cos \ | <math>P \approx P_1 = U_1 . I_1 . \cos \varphi_1</math> | ||
Consequently: | |||
<math>PF=\frac{P}{S}=\frac{U_1.i_1.cos \varphi_1}{U_1.I_{rms}}</math> <br>as: | |||
<math>\frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}}</math> | <math>\frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}}</math> | ||
<br>hence:<br><math>PF=\frac{cos \ | <br>hence:<br><math>PF=\frac{cos \varphi_1}{\sqrt {1 + THDi^2}}</math><br>Figure M13 shows a graph of <math>\frac{PF}{cos\varphi}</math> as a function of THDi. | ||
---- | ---- | ||
[[Image:FigM13.jpg|none]] | [[Image:FigM13.jpg|none]] | ||
'''''Fig. M13:'''''<i> Variation in <math>\frac{PF}{cos\ | '''''Fig. M13:'''''<i> Variation in <math>\frac{PF}{cos\varphi}</math> as a function of the THDi, where THDu = 0</i> | ||
---- | ---- |
Revision as of 09:23, 11 March 2013
The term THD means Total Harmonic Distortion and is a widely used notion in defining the level of harmonic content in alternating signals.
Definition of THD
For a signal y, the THD is defined as:
[math]\displaystyle{ THD=\frac{\sqrt{\sum_{h=2}^{h=H} Y_h^2}}{Y_1} =\frac{\sqrt{Y_2^2+Y_3^2+...+Y_H^2}}{Y_1} }[/math]
This complies with the definition given in standard IEC 61000-2-2.Note that the value can exceed 1.
According to the standard, the variable H can be limited to 50. The THD is the means to express as a single number the distortion affecting a current or voltage flowing at a given point in the installation. The THD is generally expressed as a percentage.
Current or voltage THD
For current harmonics, the equation is:
[math]\displaystyle{ THD_i=\frac{\sqrt{\sum_{h=2}^{h=H} I_h^2}}{I _1} }[/math]
The equation below is equivalent to the above, but easier and more direct when the total rms value is available:
[math]\displaystyle{ THD_i= \sqrt{\left (\frac{Irms}{I_1}\right)^2 - 1} }[/math]
For voltage harmonics, the equation is:
[math]\displaystyle{ THD_u=\frac{\sqrt {\sum_{h=2}^{h=H} U_h^2}}{U_1} }[/math]
Relation between power factor and THD
(see Fig. M13)
When the voltage is sinusoidal or virtually sinusoidal, it may be said that:
[math]\displaystyle{ P \approx P_1 = U_1 . I_1 . \cos \varphi_1 }[/math]
Consequently:
[math]\displaystyle{ PF=\frac{P}{S}=\frac{U_1.i_1.cos \varphi_1}{U_1.I_{rms}} }[/math]
as:
[math]\displaystyle{ \frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}} }[/math]
hence:
[math]\displaystyle{ PF=\frac{cos \varphi_1}{\sqrt {1 + THDi^2}} }[/math]
Figure M13 shows a graph of [math]\displaystyle{ \frac{PF}{cos\varphi} }[/math] as a function of THDi.
Fig. M13: Variation in [math]\displaystyle{ \frac{PF}{cos\varphi} }[/math] as a function of the THDi, where THDu = 0
ru:Суммарный коэффициент гармонических искажений (THD) zh:总谐波畸变率 (THD )