Definition of harmonics: Difference between revisions

From Electrical Installation Guide
m (format)
(corrected formula format + phi)
Line 23: Line 23:
'''('''see '''Fig. M13)'''  
'''('''see '''Fig. M13)'''  


When the voltage is sinusoidal or virtually sinusoidal, it may be said that:<br><span class="texhtml">''P'' = ''P''<sub>1</sub> = ''U''<sub>1</sub>.''I''<sub>1</sub>.''c''''o''''s''φ<sub>1</sub></span><br>Consequently:  
When the voltage is sinusoidal or virtually sinusoidal, it may be said that:


<math>PF=\frac{P}{S}=\frac{U_1.i_1.cos \phi_1}{U_1.I_{rms}}</math> <br>as:  
<math>P \approx P_1 = U_1 . I_1 . \cos \varphi_1</math>
 
Consequently:
 
<math>PF=\frac{P}{S}=\frac{U_1.i_1.cos \varphi_1}{U_1.I_{rms}}</math> <br>as:  


<math>\frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}}</math>  
<math>\frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}}</math>  


<br>hence:<br><math>PF=\frac{cos \phi_1}{\sqrt {1 + THDi^2}}</math><br>Figure M13 shows a graph of <math>\frac{PF}{cos\phi}</math> as a function of THDi.  
<br>hence:<br><math>PF=\frac{cos \varphi_1}{\sqrt {1 + THDi^2}}</math><br>Figure M13 shows a graph of <math>\frac{PF}{cos\varphi}</math> as a function of THDi.  


----
----
[[Image:FigM13.jpg|none]]  
[[Image:FigM13.jpg|none]]  
'''''Fig. M13:'''''<i>&nbsp;Variation in <math>\frac{PF}{cos\phi}</math>&nbsp;as a function of the THDi, where THDu = 0</i>  
'''''Fig. M13:'''''<i>&nbsp;Variation in <math>\frac{PF}{cos\varphi}</math>&nbsp;as a function of the THDi, where THDu = 0</i>  


----
----

Revision as of 09:23, 11 March 2013

The term THD means Total Harmonic Distortion and is a widely used notion in defining the level of harmonic content in alternating signals.

Definition of THD
For a signal y, the THD is defined as:

[math]\displaystyle{ THD=\frac{\sqrt{\sum_{h=2}^{h=H} Y_h^2}}{Y_1} =\frac{\sqrt{Y_2^2+Y_3^2+...+Y_H^2}}{Y_1} }[/math]

This complies with the definition given in standard IEC 61000-2-2.Note that the value can exceed 1.
According to the standard, the variable H can be limited to 50. The THD is the means to express as a single number the distortion affecting a current or voltage flowing at a given point in the installation. The THD is generally expressed as a percentage.

Current or voltage THD
For current harmonics, the equation is:

 [math]\displaystyle{ THD_i=\frac{\sqrt{\sum_{h=2}^{h=H} I_h^2}}{I _1} }[/math]

The equation below is equivalent to the above, but easier and more direct when the total rms value is available:
[math]\displaystyle{ THD_i= \sqrt{\left (\frac{Irms}{I_1}\right)^2 - 1} }[/math] 

For voltage harmonics, the equation is:
[math]\displaystyle{ THD_u=\frac{\sqrt {\sum_{h=2}^{h=H} U_h^2}}{U_1} }[/math]

Relation between power factor and THD

(see Fig. M13)

When the voltage is sinusoidal or virtually sinusoidal, it may be said that:

[math]\displaystyle{ P \approx P_1 = U_1 . I_1 . \cos \varphi_1 }[/math]

Consequently:

[math]\displaystyle{ PF=\frac{P}{S}=\frac{U_1.i_1.cos \varphi_1}{U_1.I_{rms}} }[/math]
as:

[math]\displaystyle{ \frac{I_1}{I_{rms}}=\frac{1}{\sqrt {1 + THDi^2}} }[/math]


hence:
[math]\displaystyle{ PF=\frac{cos \varphi_1}{\sqrt {1 + THDi^2}} }[/math]
Figure M13 shows a graph of [math]\displaystyle{ \frac{PF}{cos\varphi} }[/math] as a function of THDi.


FigM13.jpg

Fig. M13: Variation in [math]\displaystyle{ \frac{PF}{cos\varphi} }[/math] as a function of the THDi, where THDu = 0


ru:Суммарный коэффициент гармонических искажений (THD) zh:总谐波畸变率 (THD )

Share