Compensation to increase the available active power output
The installation of a capacitor bank can avoid the need to change a transformer in the event of a load increase |
Steps similar to those taken to reduce the declared maximum kVA, i.e. improvement of the load power factor, will maximise the available transformer capacity, i.e. to supply more active power.
Cases can arise where the replacement of a transformer by a larger unit, to overcome a load growth, may be avoided by this means. Figure L17 shows directly the power (kW) capability of fully-loaded transformers at different load power factors, from which the increase of active-power output can be obtained as the value of power factor increases.
tan φ | cos φ | Nominal rating of transformers (in kVA) | |||||||||||
100 | 160 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | ||
0.00 | 1 | 100 | 160 | 250 | 315 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 |
0.20 | 0.98 | 98 | 157 | 245 | 309 | 392 | 490 | 617 | 784 | 980 | 1225 | 1568 | 1960 |
0.29 | 0.96 | 96 | 154 | 240 | 302 | 384 | 480 | 605 | 768 | 960 | 1200 | 1536 | 1920 |
0.36 | 0.94 | 94 | 150 | 235 | 296 | 376 | 470 | 592 | 752 | 940 | 1175 | 1504 | 1880 |
0.43 | 0.92 | 92 | 147 | 230 | 290 | 368 | 460 | 580 | 736 | 920 | 1150 | 1472 | 1840 |
0.48 | 0.90 | 90 | 144 | 225 | 284 | 360 | 450 | 567 | 720 | 900 | 1125 | 1440 | 1800 |
0.54 | 0.88 | 88 | 141 | 220 | 277 | 352 | 440 | 554 | 704 | 880 | 1100 | 1480 | 1760 |
0.59 | 0.86 | 86 | 138 | 215 | 271 | 344 | 430 | 541 | 688 | 860 | 1075 | 1376 | 1720 |
0.65 | 0.84 | 84 | 134 | 210 | 265 | 336 | 420 | 529 | 672 | 840 | 1050 | 1344 | 1680 |
0.70 | 0.82 | 82 | 131 | 205 | 258 | 328 | 410 | 517 | 656 | 820 | 1025 | 1312 | 1640 |
0.75 | 0.80 | 80 | 128 | 200 | 252 | 320 | 400 | 504 | 640 | 800 | 1000 | 1280 | 1600 |
0.80 | 0.78 | 78 | 125 | 195 | 246 | 312 | 390 | 491 | 624 | 780 | 975 | 1248 | 1560 |
0.86 | 0.76 | 76 | 122 | 190 | 239 | 304 | 380 | 479 | 608 | 760 | 950 | 1216 | 1520 |
0.91 | 0.74 | 74 | 118 | 185 | 233 | 296 | 370 | 466 | 592 | 740 | 925 | 1184 | 1480 |
0.96 | 0.72 | 72 | 115 | 180 | 227 | 288 | 360 | 454 | 576 | 720 | 900 | 1152 | 1440 |
1.02 | 0.70 | 70 | 112 | 175 | 220 | 280 | 350 | 441 | 560 | 700 | 875 | 1120 | 1400 |
Fig. L17: Active-power capability of fully-loaded transformers, when supplying loads at different values of power factor
Example: (see Fig. L18 )
An installation is supplied from a 630 kVA transformer loaded at 450 kW (P1) with a mean power factor of 0.8 lagging. The apparent power
[math]\displaystyle{ S1=\frac{450}{0.8}=562\, kVA }[/math]
The corresponding reactive power
[math]\displaystyle{ Q1=\sqrt{S1^2-P1^2}=337\, kvar }[/math]
The anticipated load increase P2 = 100 kW at a power factor of 0.7 lagging.
The apparent power
[math]\displaystyle{ S2=\frac{100}{0.7}=143\, kVA }[/math]
The corresponding reactive power
[math]\displaystyle{ Q2=\sqrt{S2^2-P2^2}=102\, kvar }[/math]
What is the minimum value of capacitive kvar to be installed, in order to avoid a change of transformer?
Total power now to be supplied:
P = P1 + P2 = 550 kW
The maximum reactive power capability of the 630 kVA transformer when delivering 550 kW is:
[math]\displaystyle{ Qm=\sqrt{S^2-P^2} }[/math] [math]\displaystyle{ Qm=\sqrt{630^2-550^2}=307\, kvar }[/math]
Total reactive power required by the installation before compensation:
Q1 + Q2 = 337 + 102 = 439 kvar
So that the minimum size of capacitor bank to install:
Qkvar = 439 - 307 = 132 kvar
It should be noted that this calculation has not taken account of load peaks and their duration.
The best possible improvement, i.e. correction which attains a power factor of
1 would permit a power reserve for the transformer of 630 - 550 = 80 kW.
The capacitor bank would then have to be rated at 439 kvar.
Fig. L18: Compensation Q allows the installation-load extension S2 to be added, without the need to replace the existing transformer, the output of which is limited to S