Harmonic distortion indicators - Power factor: Difference between revisions
m (r2.7.2) (robot Adding: zh:谐波畸变指标 - 功率因数) |
(updated according to guide 2013) |
||
Line 2: | Line 2: | ||
__TOC__ | __TOC__ | ||
The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter [[Power Factor Correction|Power Factor Correction]]. | |||
<math>\lambda = \frac {P (kW)}{S (kVA)}</math> | |||
The Power Factor must not be mixed-up with the Displacement Power Factor (cosφ), relative to fundamental signals only. | |||
As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion. | |||
<math>\cos \phi=\frac{ | When the voltage is sinusoidal or virtually sinusoidal (THD<sub>u</sub> ~ 0), it may be said that the active power is only a function of the fundamental current. Then: | ||
<math>P \approx P1 = U_1\ I_1\ \cos\phi</math> | |||
'''Consequently:''' | |||
<math> \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\phi}{U_1\ I_{rms}} </math> | |||
As: <math>\frac {I_1}{I_{rms}} = \frac {1} {\sqrt {1+THD_i^2}} </math> (see [[Definition of harmonics]]), | |||
hence: <math> \lambda \approx \frac {cos\phi}{\sqrt{1+THD_i^2}}</math> | |||
'''Figure M6''' shows a graph of λ/cosφ as a function of THD<sub>i</sub>, for THD<sub>u</sub> ~ 0. | |||
[[Image:Fig_M06.jpg|none|499px]] | |||
'''''Fig. M6 :''''' ''Variation of λ/cosφ as a function of THD<sub>i</sub>, for THD<sub>u</sub> ~ 0'' | |||
[[ru:Показатели гармоник - коэффициент мощности]] | [[ru:Показатели гармоник - коэффициент мощности]] | ||
[[zh:谐波畸变指标 - 功率因数]] | [[zh:谐波畸变指标 - 功率因数]] |
Revision as of 15:56, 18 October 2013
The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter Power Factor Correction.
[math]\displaystyle{ \lambda = \frac {P (kW)}{S (kVA)} }[/math]
The Power Factor must not be mixed-up with the Displacement Power Factor (cosφ), relative to fundamental signals only.
As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion.
When the voltage is sinusoidal or virtually sinusoidal (THDu ~ 0), it may be said that the active power is only a function of the fundamental current. Then:
[math]\displaystyle{ P \approx P1 = U_1\ I_1\ \cos\phi }[/math]
Consequently:
[math]\displaystyle{ \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\phi}{U_1\ I_{rms}} }[/math]
As: [math]\displaystyle{ \frac {I_1}{I_{rms}} = \frac {1} {\sqrt {1+THD_i^2}} }[/math] (see Definition of harmonics),
hence: [math]\displaystyle{ \lambda \approx \frac {cos\phi}{\sqrt{1+THD_i^2}} }[/math]
Figure M6 shows a graph of λ/cosφ as a function of THDi, for THDu ~ 0.
Fig. M6 : Variation of λ/cosφ as a function of THDi, for THDu ~ 0
ru:Показатели гармоник - коэффициент мощности zh:谐波畸变指标 - 功率因数