User:LMischler/Tables-2016-chapter-F: Difference between revisions

From Electrical Installation Guide
(Created page with "== F8 - Tab1150 == {{TableStart|Tab1150|3col}} |- ! colspan="2" | Uo (V) ! 50 < Uo ≤ 120 ! 120 < Uo ≤ 230 ! 230 < Uo ≤ 400 ! Uo > 400 |- | rowspan="2" | System | T...")
 
No edit summary
 
Line 22: Line 22:
| 0.04
| 0.04
|-
|-
{{TableEnd|Tab1150|F8|F8Maximum safe duration of the assumed values of AC touch voltage (in seconds)}}
{{TableEnd|Tab1150|F8|Maximum safe duration of the assumed values of AC touch voltage (in seconds)}}


----
----
Line 44: Line 44:
| 0.04
| 0.04
|-
|-
{{TableEnd|Tab1151|F10|F10Maximum disconnecting time for AC final circuits not exceeding 32 A
{{TableEnd|Tab1151|F10|Maximum disconnecting time for AC final circuits not exceeding 32 A
|a| Uo is the nominal phase to earth voltage }}
|a| Uo is the nominal phase to earth voltage }}


Line 88: Line 88:
| colspan="4" | According to manufacturer
| colspan="4" | According to manufacturer
|-
|-
{{TableEnd|Tab1152|F11|F11Maximum operating time of RCD’s (in seconds)}}
{{TableEnd|Tab1152|F11|Maximum operating time of RCD’s (in seconds)}}


----
----
Line 110: Line 110:
| 0.1
| 0.1
|-
|-
{{TableEnd|Tab1154|F13|F13Maximum disconnecting time for AC final circuits not exceeding 32 A
{{TableEnd|Tab1154|F13|Maximum disconnecting time for AC final circuits not exceeding 32 A
|a|  Uo is the nominal phase to earth voltage }}
|a|  Uo is the nominal phase to earth voltage }}


Line 130: Line 130:
| 2.17
| 2.17
|-
|-
{{TableEnd|Tab1154|F19|F19Correspondence between the earth leakage capacitance and the first fault current
{{TableEnd|Tab1154|F19|Correspondence between the earth leakage capacitance and the first fault current
|| Note: 1 µF is the 1 km typical leakage capacitance for 4-conductor cable. }}
|| Note: 1 µF is the 1 km typical leakage capacitance for 4-conductor cable. }}


Line 192: Line 192:
| 833 Ω
| 833 Ω
|-
|-
{{TableEnd|Tab1156|F28|F28The upper limit of resistance for an installation earthing electrode which must not be exceeded, for given sensitivity levels of RCDs at U<sub>L</sub> voltage limits of 50 V and 25 V}}
{{TableEnd|Tab1156|F28|The upper limit of resistance for an installation earthing electrode which must not be exceeded, for given sensitivity levels of RCDs at U<sub>L</sub> voltage limits of 50 V and 25 V}}


----
----
Line 239: Line 239:
| 0.25
| 0.25
|-
|-
{{TableEnd|Tab1158|F40|F40Correction factor to apply to the lengths given in tables F41 to F44 for TN systems }}
{{TableEnd|Tab1158|F40|Correction factor to apply to the lengths given in tables F41 to F44 for TN systems }}


----
----
Line 745: Line 745:
| 51
| 51
|-
|-
{{TableEnd|Tab1159|F41|F41Maximum circuit lengths (in metres) for different sizes of copper conductor and instantaneous-tripping-current settings for general-purpose circuit-breakers in 230/400 V TN system with m {{=}} 1}}
{{TableEnd|Tab1159|F41|Maximum circuit lengths (in metres) for different sizes of copper conductor and instantaneous-tripping-current settings for general-purpose circuit-breakers in 230/400 V TN system with m {{=}} 1}}


----
----
Line 935: Line 935:
| 304
| 304
|-
|-
{{TableEnd|Tab1160|F42|F42Maximum circuit lengths (in meters) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type B{{fn|2}} }}
{{TableEnd|Tab1160|F42|Maximum circuit lengths (in meters) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type B{{fn|2}} }}


----
----
Line 1,125: Line 1,125:
| 152
| 152
|-
|-
{{TableEnd|Tab1161|F43|F43Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type C{{fn|2}} }}
{{TableEnd|Tab1161|F43|Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type C{{fn|2}} }}


----
----
Line 1,315: Line 1,315:
| 109
| 109
|-
|-
{{TableEnd|Tab1162|F44|F44Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type D{{fn|2}} }}
{{TableEnd|Tab1162|F44|Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m {{=}} 1, protected against indirect contact by circui-breakers type D{{fn|2}} }}


----
----
Line 1,348: Line 1,348:
| Vigilohm XGR+XRM or XD312 or XL308
| Vigilohm XGR+XRM or XD312 or XL308
|-
|-
{{TableEnd|Tab1163|F51|F51Essential functions in IT schemes and examples with Schneider Electric products}}
{{TableEnd|Tab1163|F51|Essential functions in IT schemes and examples with Schneider Electric products}}


----
----
Line 1,390: Line 1,390:
| 0.12
| 0.12
|-
|-
{{TableEnd|Tab1164|F57|F57Correction factor to apply to the lengths given in tables F41 to F44 for IT systems}}
{{TableEnd|Tab1164|F57|Correction factor to apply to the lengths given in tables F41 to F44 for IT systems}}


----
----
Line 1,459: Line 1,459:
| Hydrogen sulfide.
| Hydrogen sulfide.
|-
|-
{{TableEnd|Tab1165|F70|F70External influence classification according to IEC 60364-5-51 standard }}
{{TableEnd|Tab1165|F70|External influence classification according to IEC 60364-5-51 standard }}


----
----
Line 1,506: Line 1,506:
|  
|  
|-
|-
{{TableEnd|Tab1166|F71|F71Immunity level of Schneider Electric RCDs}}
{{TableEnd|Tab1166|F71|Immunity level of Schneider Electric RCDs}}


----
----
Line 1,565: Line 1,565:
| 30 V / m
| 30 V / m
|-
|-
{{TableEnd|Tab1167|F72|F72Immunity to nuisance tripping tests undergone by Schneider Electric RCDs}}
{{TableEnd|Tab1167|F72|Immunity to nuisance tripping tests undergone by Schneider Electric RCDs}}


----
----
Line 1,608: Line 1,608:
| 2
| 2
|-
|-
{{TableEnd|Tab1168|F74|F74Means of reducing the ratio IΔn/Iph (max.)
{{TableEnd|Tab1168|F74|Means of reducing the ratio IΔn/Iph (max.)
||These measures can be combined. By carefully centralizing the cables in a ring core of 200 mm diameter, where a 50 mm core would be large enough, and using a sleeve, the ratio 1/1000 could become 1/30000.}}
||These measures can be combined. By carefully centralizing the cables in a ring core of 200 mm diameter, where a 50 mm core would be large enough, and using a sleeve, the ratio 1/1000 could become 1/30000.}}


{{footnotes}}
{{footnotes}}
<references>
<references>
{{fn-detail|2|For the definition of type B, C, D circuit breakers, refer to [[Fundamental characteristics of a circuit-breaker]] }}
{{fn-detail|2|For the definition of type B, C, D circuit breakers, refer to [[Fundamental characteristics of a circuit-breaker]] }}

Latest revision as of 09:19, 27 March 2018

F8 - Tab1150

Uo (V) 50 < Uo ≤ 120 120 < Uo ≤ 230 230 < Uo ≤ 400 Uo > 400
System TN or IT 0.8 0.4 0.2 0.1
TT 0.3 0.2 0.07 0.04
Fig. F8 – Maximum safe duration of the assumed values of AC touch voltage (in seconds)

F10 - Tab1151

Uo[a] (V) T (s)
50 <Uo ≤ 120 0.3
120 < Uo ≤ 230 0.2
230 < Uo ≤ 400 0.07
Uo > 400 0.04

[a]  Uo is the nominal phase to earth voltage

Fig. F10 – Maximum disconnecting time for AC final circuits not exceeding 32 A

F11 - Tab1152

X IΔn 1 2 5 > 5
Domestic Instantaneous 0.3 0.15 0.04 0.04
Type S 0.5 0.2 0.15 0.15
Industrial Instantaneous 0.3 0.15 0.04 0.04
Time-delay : 0.06 s 0.5 0.2 0.15 0.15
Time-delay (other) According to manufacturer
Fig. F11 – Maximum operating time of RCD’s (in seconds)

F13 - Tab1154

Uo[a] (V) T (s)
50 < Uo ≤ 120 0.8
120 < Uo ≤ 230 0.4
230 < Uo ≤ 400 0.2
Uo > 400 0.1

[a]  Uo is the nominal phase to earth voltage

Fig. F13 – Maximum disconnecting time for AC final circuits not exceeding 32 A

F19 - Tab1154

Leakage capacitance (µF) First fault current (A)
1 0.07
5 0.36
30 2.17

Note: 1 µF is the 1 km typical leakage capacitance for 4-conductor cable.

Fig. F19 – Correspondence between the earth leakage capacitance and the first fault current

- Tab1155

Type / installation level Main-distribution Sub-distribution Comments
Source Ground Return (SGR) Possible Used
Residual Sensing (RS) (SGR) Possible Recommended or required Often used
Zero Sequence (SGR) Possible Recommended or required Rarely used

F28 - Tab1156

IΔn Maximum resistance of the earth electrode
(50 V) (25 V)
3 A 16 Ω 8 Ω
1 A 50 Ω 25 Ω
500 mA 100 Ω 50 Ω
300 mA 166 Ω 83 Ω
30 mA 1666 Ω 833 Ω
Fig. F28 – The upper limit of resistance for an installation earthing electrode which must not be exceeded, for given sensitivity levels of RCDs at UL voltage limits of 50 V and 25 V

- Tab1157

Core size (mm2) Value of resistance
S = 150 mm2 R+15%
S = 185 mm2 R+20%
S = 240 mm2 R+25%

F40 - Tab1158

Circuit Conductor material m = Sph/SPE (or PEN)
m = 1 m = 2 m = 3 m = 4
3P + N or P + N Copper 1 0.67 0.50 0.40
Aluminium 0.62 0.42 0.31 0.25
Fig. F40 – Correction factor to apply to the lengths given in tables F41 to F44 for TN systems

F41 - Tab1159

Nominal cross- sectional area of conductors Instantaneous or short-time-delayed tripping current Im (amperes)
mm2 50 63 80 100 125 160 200 250 320 400 500 560 630 700 800 875 1000 1120 1250 1600 2000 2500 3200 4000 5000 6300 8000 10000 12500
1.5 100 79 63 50 40 31 25 20 16 13 10 9 8 7 6 6 5 4 4
2.5 167 133 104 83 67 52 42 33 26 21 17 15 13 12 10 10 8 7 7 5 4
4 267 212 167 133 107 83 67 53 42 33 27 24 21 19 17 15 13 12 11 8 7 5 4
6 400 317 250 200 160 125 100 80 63 50 40 36 32 29 25 23 20 18 16 13 10 8 6 5 4
10 417 333 267 208 167 133 104 83 67 60 53 48 42 38 33 30 27 21 17 13 10 8 7 5 4
16 427 333 267 213 167 133 107 95 85 76 67 61 53 48 43 33 27 21 17 13 11 8 7 5 4
25 417 333 260 208 167 149 132 119 104 95 83 74 67 52 42 33 26 21 17 13 10 8 7
35 467 365 292 233 208 185 167 146 133 117 104 93 73 58 47 36 29 23 19 15 12 9
50 495 396 317 283 251 226 198 181 158 141 127 99 79 63 49 40 32 25 20 16 13
70 417 370 333 292 267 233 208 187 146 117 93 73 58 47 37 29 23 19
95 452 396 362 317 283 263 198 158 127 99 79 63 50 40 32 25
120 457 400 357 320 250 200 160 125 100 80 63 50 40 32
150 435 388 348 272 217 174 136 109 87 69 54 43 35
185 459 411 321 257 206 161 128 103 82 64 51 41
240 400 320 256 200 160 128 102 80 64 51
Fig. F41 – Maximum circuit lengths (in metres) for different sizes of copper conductor and instantaneous-tripping-current settings for general-purpose circuit-breakers in 230/400 V TN system with m = 1

F42 - Tab1160

Sph Rated current (A)
mm2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125
1.5 1200 600 400 300 200 120 75 60 48 37 30 24 19 15 12 10
2.5 1000 666 500 333 200 125 100 80 62 50 40 32 25 20 16
4 1066 800 533 320 200 160 128 100 80 64 51 40 32 26
6 1200 800 480 300 240 192 150 120 96 76 60 48 38
10 800 500 400 320 250 200 160 127 100 80 64
16 800 640 512 400 320 256 203 160 128 102
25 800 625 500 400 317 250 200 160
35 875 700 560 444 350 280 224
50 760 603 475 380 304
Fig. F42 – Maximum circuit lengths (in meters) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m = 1, protected against indirect contact by circui-breakers type B[1]

F43 - Tab1161

Sph Rated current (A)
mm2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125
1.5 600 300 200 150 100 60 37 30 24 18 15 12 9 7 6 5
2.5 500 333 250 167 100 62 50 40 31 25 20 16 12 10 8
4 533 400 267 160 100 80 64 50 40 32 25 20 16 13
6 600 400 240 150 120 96 75 60 48 38 30 24 19
10 677 400 250 200 160 125 100 80 63 50 40 32
16 640 400 320 256 200 160 128 101 80 64 51
25 625 500 400 312 250 200 159 125 100 80
35 875 700 560 437 350 280 222 175 140 112
50 760 594 475 380 301 237 190 152
Fig. F43 – Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m = 1, protected against indirect contact by circui-breakers type C[1]

F44 - Tab1162

Sph Rated current (A)
mm2 1 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125
1.5 429 214 143 107 71 43 27 21 17 13 11 9 7 5 4 3
2.5 714 357 238 179 119 71 45 36 29 22 18 14 11 9 7 6
4 571 381 286 190 114 71 80 46 36 29 23 18 14 11 9
6 857 571 429 286 171 107 120 69 54 43 34 27 21 17 14
10 952 714 476 284 179 200 114 89 71 57 45 36 29 23
16 762 457 286 320 183 143 114 91 73 57 46 37
25 714 446 500 286 223 179 143 113 89 71 57
35 625 700 400 313 250 200 159 125 80 100
50 848 543 424 339 271 215 170 136 109
Fig. F44 – Maximum circuit lengths (in metres) for different sizes of copper conductor in a 230/400 V single-phase or three-phase TN system with m = 1, protected against indirect contact by circui-breakers type D[1]

F51 - Tab1163

Minimum functions required Components and devices Examples
Protection against overvoltages at power frequency (1) Voltage limiter Cardew C
Neutral earthing resistor (for impedance earthing variation) (2) Resistor Impedance Zx
Overall earth-fault monitor with alarm for first fault condition (3) Permanent insulation monitor PIM with alarm feature Vigilohm IM10

or IM400

Automatic fault clearance on second fault and protection of the neutral conductor against overcurrent (4) Four-pole circuit-breakers

(if the neutral is distributed) all 4 poles trip

Compact circuit-breaker or RCD-MS
Location of first fault (5) With device for fault-location on live system, or by successive opening of circuits Vigilohm XGR+XRM or XD312 or XL308
Fig. F51 – Essential functions in IT schemes and examples with Schneider Electric products

F57 - Tab1164

Circuit Conductor material m = Sph/SPE (or PEN)
m = 1 m = 2 m = 3 m = 4
3 phases Copper 0.86 0.57 0.43 0.34
Aluminium 0.54 0.36 0.27 0.21
3ph + N or 1ph + N Copper 0.50 0.33 0.25 0.20
Aluminium 0.31 0.21 0.16 0.12
Fig. F57 – Correction factor to apply to the lengths given in tables F41 to F44 for IT systems

- Tab1165

Influence of the electrical network Disturbed network Super-immunized residual current protections

Type A SI:
Type-SI.gif

Super-immunized residual current protections

SI:
Type-SI.gif

Super-immunized residual current protections

SI:
Type-SI.gif
+
Appropriate additional protection (sealed cabinet or unit)

Super-immunized residual current protections

SI:
Type-SI.gif
+
Appropriate additional protection (sealed cabinet or unit + overpressure)

Clean network Standard immunized residual current protections

Type AC

Presence of corrosive or polluting substances(IEC 60364-5-51) Negligible presence Significant presence of atmospheric origin Intermittent or accidental subjection to corrosive or polluting chemical substances Continuous subjection to corrosive or polluting chemical substances
Severity level AF1 AF2 AF3 AF4
Characteristics required for selection and erection of equipment Normal. According to the nature of substances (for example, compliance to salt mist test according to IEC 60068-2-11) Protection against corrosion according to equipment specification Equipment specially designed according to the nature of substances

F70 - Tab1165

Examples of exposed sites External influences
Iron and steel works. Presence of sulfur, sulfur vapor, hydrogen sulfide.
Marinas, trading ports, boats, sea edges, naval shipyards. Salt atmospheres, humid outside, low temperatures.
Swimming pools, hospitals, food & beverage. Chlorinated compounds.
Petrochemicals. Hydrogen, combustion gases, nitrogen oxides.
Breeding facilities, tips. Hydrogen sulfide.
Fig. F70 – External influence classification according to IEC 60364-5-51 standard

F71 - Tab1166

Device type Nuisance trippings Non-trippings
High frequency leakage current Fault current Low temperatures
(down to - 25°C)
Corrosion Dust
Rectified alternating Pure direct
AC [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
A [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
SI [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
B [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
Fig. F71 – Immunity level of Schneider Electric RCDs

F72 - Tab1167

Disturbance type Rated test wave Immunity

Acti 9, ID-RCCB, DPN Vigi, Vigi iC60, Vigi C120, Vigi NG125 SI type

Continuous disturbances
Harmonics 1 kHz Earth leakage current = 8 x I∆n
Transient disturbances
Lightning induced overvoltage 1.2 / 50 µs pulse

(IEC/EN 61000-4-5)

4.5 kV between conductors 5.5 kV / earth
Lightning induced current 8 / 20 µs pulse

(IEC/EN 61008)

5 kA peak
Switching transient, indirect lightning currents 0.5 µs / 100 kHz “ring wave”

(IEC/EN 61008)

400 A peak
Downstream surge arrester operation, capacitance loading 10 ms pulse 500 A
Electromagnetic compatibility
Inductive load switchings fluorescent lights, motors, etc.) Repeated bursts

(IEC 61000-4-4)

5 kV / 2.5 kHz

4 kV / 400 kHz

Fluorescent lights, thyristor controlled circuits, etc. RF conducted waves

(level 4 IEC 61000-4-6)
(level 4 IEC 61000-4-16)

30 V (150 kHz to 230 MHz)

250 mA (15 kHz to 150 kHz)

RF waves (TV & radio, broadcact, telecommunications,etc.) RF radiated waves 80 MHz to 1 GHz

(IEC 61000-4-3)

30 V / m
Fig. F72 – Immunity to nuisance tripping tests undergone by Schneider Electric RCDs

F74 - Tab1168

Measures Diameter (mm) Sensitivity diminution factor
Careful centralizing of cables through the ring core 3
Oversizing of the ring core ø 50 → ø 100 2
ø 80 → ø 200 2
ø 120 → ø 300 6
Use of a steel or soft-iron shielding sleeve ø 50 4
  • Of wall thickness 0.5 mm
ø 80 3
  • Of length 2 x inside diameter of ring core
ø 120 3
  • Completely surrounding the conductors and overlapping
    the circular core equally at both ends
ø 200 2

These measures can be combined. By carefully centralizing the cables in a ring core of 200 mm diameter, where a 50 mm core would be large enough, and using a sleeve, the ratio 1/1000 could become 1/30000.

Fig. F74 – Means of reducing the ratio IΔn/Iph (max.)


Notes

<references> [1]

  1. ^ 1 2 3 4 For the definition of type B, C, D circuit breakers, refer to Fundamental characteristics of a circuit-breaker