Chapter G

Sizing and protection of conductors


Worked example of cable calculation: Difference between revisions

From Electrical Installation Guide
Home > Sizing and protection of conductors > Worked example of cable calculation
m (→‎Calculation using software Ecodial: changed how the table G66 is splitting in 2 "columns/parts")
(update_2018)
Line 9: Line 9:
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.


The single-line diagram is shown in {{FigureRef|G65}} below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on {{FigureRef|G66}}. This study was carried out with Ecodial (a Schneider Electric software).
The single-line diagram is shown in {{FigureRef|G65}} below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on {{FigureRef|G69}}. This study was carried out with Ecodial (a Schneider Electric software).


This is followed by the same calculations carried out by the simplified method described in this guide.  
This is followed by the same calculations carried out by the simplified method described in this guide.


{{FigImage|DB422367_EN|svg|G65|Example of single-line diagram}}
{{FigImage|DB422367_EN|svg|G65|Example of single-line diagram}}
Line 19: Line 19:
{{TableStart|Tab1243|5col}}
{{TableStart|Tab1243|5col}}
|-
|-
! colspan="2" | General network characteristics
! colspan="2" | General network characteristics  
| rowspan="51" |
| rowspan="51" |
! colspan="2" | Cable C3
! colspan="2" |Cable C3
|-
|-
| Earthing system  
| Earthing system  
| TN-S  
| TN-S  
| Length  
|Length
| 20
|20
|-
|-
| Neutral distributed  
| Neutral distributed  
| No  
| No  
| Maximum load current (A)  
|Maximum load current (A)
| 509
|518
|-
|-
| Voltage (V)  
| Voltage (V)  
| 400  
| 400  
| Type of insulation  
|Type of insulation
| PVC
|PVC
|-
|-
| Frequency (Hz)  
| Frequency (Hz)  
| 50  
| 50  
| Ambient temperature (°C)
|Ambient temperature (°C)
| 30
|30
|-
|-
| Upstream fault level (MVA)  
| Upstream fault level (MVA)  
| 500  
| 500  
| Conductor material  
|Conductor material
| Copper
|Copper
|-
|-
| Resistance of MV network (mΩ)  
| Resistance of MV network (mΩ)  
| 0.0351
| 0.035
| Single-core or multi-core cable  
|Single-core or multi-core cable
| Single
|Single
|-
|-
| Reactance of MV network (mΩ)  
| Reactance of MV network (mΩ)  
| 0.351  
| 0.351  
| Installation method
|Installation method
| F
|F31
|-
|-
! colspan="2" | Transformer T1
! colspan="2" | Transformer T1  
| Phase conductor selected csa (mm<sup>2</sup>)  
|Phase conductor selected csa (mm2)
| 2 x 95
|2 x 120
|-
|-
| Rating (kVA)  
| Rating (kVA)  
| 630  
| 630  
| Neutral conductor selected csa (mm<sup>2</sup>)  
|Neutral conductor selected csa (mm2)
| 2 x 95
|2 x 120
|-
|-
| Short-circuit impedance voltage (%)  
| Short-circuit impedance voltage (%)  
| 4  
| 4  
| PE conductor selected csa (mm<sup>2</sup>)  
|PE conductor selected csa (mm2)
| 1 x 95
|1 x 120
|-
|-
| Transformer resistance RT ()  
| Load-losses (PkrT) (W)  
| 3.472
| 7100
| Cable voltage drop ΔU (%)
|Cable voltage drop ΔU (%)
| 0.53
|0.459
|-
|-
| Transformer reactance XT ()  
| No-load voltage (V)  
| 10.64
| 420
| Total voltage drop ΔU (%)  
|Total voltage drop ΔU (%)
| 0.65
|0.583
|-
|-
| 3-phase short-circuit current Ik<sub>3</sub> (kA)  
| Rated voltage (V)  
| 21.54
| 400
| 3-phase short-circuit current Ik<sub>3</sub> (kA)  
|3-phase short-circuit current Ik3 (kA)
| 19.1
|21.5
|-
|-
! colspan="2" | Cable C1
! colspan="2" | Cable C1  
| 1-phase-to-earth fault current Id (kA)  
|1-phase-to-earth fault current Ief (kA)
| 11.5
|18
|-
|-
| Length (m)  
| Length (m)  
| 5  
| 5  
! colspan="2" | Switchboard B6
! colspan="2" |Distribution Board B6
|-
|-
| Maximum load current (A)  
| Maximum load current (A)  
| 860
| 909
| Reference  
|Reference
| Linergy 800
|Prisma Plus G
|-
|-
| Type of insulation  
| Type of insulation  
| PVC  
| PVC  
| Rated current (A)  
|Rated current (A)
| 750
|630
|-
|-
| Ambient temperature (°C)  
| Ambient temperature (°C)  
| 30  
| 30  
! colspan="2" | Circuit-breaker Q7
! colspan="2" |Circuit breaker Q7
|-
|-
| Conductor material  
| Conductor material  
| Copper  
| Copper  
| Load current (A)
|Load current (A)
| 255
|238
|-
|-
| Single-core or multi-core cable  
| Single-core or multi-core cable  
| Single  
| Single  
| Type  
|Type
| Compact
|Compact
|-
|-
| Installation method  
| Installation method  
| F
| 31F
| Reference  
|Reference
| NSX400F
|NSX250B
|-
|-
| Number of layers  
| Number of layers  
| 1  
| 1  
| Rated current (A)
|Rated current (A)
| 400
|250
|-
|-
| Phase conductor selected csa (mm<sup>2</sup>)  
| Phase conductor selected csa (mm²)  
| 2 x 240  
| 2 x 240  
| Number of poles and protected poles  
|Number of poles and protected poles
| 3P3d
|3P3d
|-
|-
| Neutral conductor selected csa (mm<sup>2</sup>)  
| Neutral conductor selected csa (mm²)  
| 2 x 240  
| 2 x 240  
| Tripping unit  
|Tripping unit
| Micrologic 2.3
|Micrologic 5.2 E
|-
|-
| PE conductor selected csa (mm<sup>2</sup>)  
| PE conductor selected csa (mm²)  
| 1 x 120
| 1 x 240
| Overload trip Ir (A)  
|Overload trip Ir (A)
| 258
|238
|-
|-
| Voltage drop ΔU (%)  
| Voltage drop ΔU (%)  
| 0.122
| 0.124
| Short-delay trip Im / Isd (A)  
|Short-delay trip Im / Isd (A)
| 2576
|2380
|-
|-
| 3-phase short-circuit current Ik<sub>3</sub> (kA)  
| 3-phase short-circuit current Ik3 (kA)  
| 21.5  
| 21.5  
! colspan="2" | Cable C7
! colspan="2" |Cable C7
|-
|-
| Courant de défaut phase-terre Id (kA)  
| Earth fault current Ief (kA)  
| 15.9
| 18
| Length  
|Length
| 5
|5
|-
|-
! colspan="2" | Circuit-breaker Q1
! colspan="2" | Circuit breaker Q1  
| Maximum load current (A)  
|Maximum load current (A)
| 255
|238
|-
|-
| Load current (A)  
| Load current (A)  
| 860
| 909
| Type of insulation  
|Type of insulation
| PVC
|PVC
|-
|-
| Type  
| Type  
| Compact
| Masterpact
| Ambient temperature (°C)
|Ambient temperature (°C)
| 30
|30
|-
|-
| Reference  
| Reference  
| NS1000N
| MTZ2 10N1
| Conductor material  
|Conductor material
| Copper
|Copper
|-
|-
| Rated current (A)  
| Rated current (A)  
| 1000  
| 1000  
| Single-core or multi-core cable  
|Single-core or multi-core cable
| Single
|Single
|-
|-
| Number of poles and protected poles  
| Number of poles and protected poles  
| 4P4d  
| 4P4d  
| Installation method  
|Installation method
| F
|F31
|-
|-
| Tripping unit  
| Tripping unit  
| Micrologic 5.0
| Micrologic 5.0X
| Phase conductor selected csa (mm<sup>2</sup>)  
|Phase conductor selected csa (mm²)
| 1 x 95
|1 x 95
|-
|-
| Overload trip Ir (A)  
| Overload trip Ir (A)  
| 900
| 920
| Neutral conductor selected csa (mm<sup>2</sup>)  
|Neutral conductor selected csa (mm²)
| -
|1 x 95
|-
|-
| Short-delay trip Im / Isd (A)  
| Short-delay trip Im / Isd (A)  
| 9000
| 9200
| PE conductor selected csa (mm<sup>2</sup>)  
|PE conductor selected csa (mm²)
| 1 x 50
|1 x 95
|-
|-
| Tripping time tm (ms)  
| Tripping time tm (ms)  
| 50  
| 50  
| Cable voltage drop ΔU (%)  
|Cable voltage drop ΔU (%)
| 0.14
|0.131
|-
|-
! colspan="2" | Switchboard B2
! colspan="2" | Switchboard B1
| Total voltage drop ΔU (%)  
|Total voltage drop ΔU (%)
| 0.79
|0.714
|-
|-
| Reference  
| Reference  
| Linergy 1250
| Prisma Plus P
| 3-phase short-circuit current Ik<sub>3</sub> (kA)  
|3-phase short-circuit current Ik3 (kA)
| 18.0
|18.0
|-
|-
| Rated current (A)  
| Rated current (A)  
| 1050
| 1000
| 1-phase-to-earth fault current Id (kA)  
|1-phase-to-earth fault current Ief (kA)
| 10.0
|14.2
|-
|-
! colspan="2" | Circuit breaker Q3
! colspan="2" | Circuit breaker Q3  
| colspan="2" rowspan="9" |
| rowspan="9" colspan="2" |
|-
|-
| Load current (A)  
| Load current (A)  
| 509
| 518
|-
|-
| Type  
| Type  
Line 236: Line 236:
| 630  
| 630  
|-
|-
| Number of poles and protected poles
|Number of poles and protected poles
| 4P4d
|4P4d
|-
|-
| Tripping unit
|Tripping unit
| Micrologic 2.3
|Micrologic 5.3 E
|-
|-
|Overload trip Ir (A)
|Overload trip Ir (A)
| 510
|518
|-
|-
| Short-delay trip Im / Isd (A)
|Short-delay trip Im / Isd (A)
| 5100
|1036
|-
|-
{{TableEnd|Tab1243|G66|Partial results of calculation carried out with Ecodial software (Schneider Electric). The calculation is performed according to Cenelec TR50480 }}
{{TableEnd|Tab1243|G66|Partial results of calculation carried out with Ecodial software (Schneider Electric). The calculation is performed according to Cenelec TR50480 }}


== The same calculation using the simplified method recommended in this guide ==
== The same calculation using the simplified method recommended in this guide ==


=== Dimensioning circuit C1 ===
=== Dimensioning circuit C1 ===


The MV/LV 630 kVA transformer has a rated no-load voltage of 420 V. Circuit C1 must be suitable for a current of:
The MV/LV 630 kVA transformer has a rated voltage of 400 V. Circuit C1 must be suitable for a current of:


<math>I_B=\frac{630 \times 10^3}{\sqrt 3 \times 420}=866 A</math> per phase  
<math>I_B=\frac{630 \times 10^3}{\sqrt 3 \times 400}=909 A</math> per phase  


Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method F.
Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method 31F.


Each conductor will therefore carry 433A. {{FigureRef|G21a}} indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 240mm<sup>2</sup>.
Each conductor will therefore carry 455 A. {{FigureRef|G21}} indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 240 mm².


The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:


<math>R=\frac{23.7 \times 5}{240\times 2}=0.25 m\Omega</math> (cable resistance: 23.7 mΩ.mm<sup>2</sup>/m)  
<math>R=\frac{18.51 \times 5}{240\times 2}=0.19 m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m at 20 °C))


<math>X = 0,08 \times 5 = 0.4 m\Omega</math> (cable reactance: 0.08 mΩ/m)
<math>X = 0,08 \times 5 = 0.4 m\Omega</math> (cable reactance: 0.08 mΩ/m, 2 cables in parallel)


=== Dimensioning circuit C3 ===
=== Dimensioning circuit C3 ===


Circuit C3 supplies two 150kW loads with cos φ = 0.85, so the total load current is:
Circuit C3 supplies two loads, in total 310 kW with cos φ = 0.85, so the total load current is:


<math>I_B=\frac{300 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=509 A</math>  
<math>I_B=\frac{310 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=526 A</math>  


Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.
Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.


Each conductor will therefore carry 255A. {{FigureRef|G21a}} indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm<sup>2</sup>.
Each conductor will therefore carry 263 A. {{FigureRef|G21}} indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 120 mm².


The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:


<math>R=\frac{23.7\times 20}{95\times 2}=2.5 m\Omega</math> (cable resistance: 23.7 mΩ.mm<sup>2</sup>/m)  
<math>R=\frac{18.51\times 20}{120\times 2}=1.54 m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m at 20 °C)
 
<math>X = 0.08/ 2 \times 20 = 1.6m \Omega</math>  (cable reactance: 0.08 mΩ/m, 2 cables in parallel)


<math>X = 0.08 \times 20 = 1.6m \Omega</math>  (cable reactance: 0.08 mΩ/m)
=== Dimensioning circuit C7 ===
=== Dimensioning circuit C7 ===


Circuit C7 supplies one 150kW load with cos φ = 0.85, so the total load current is:
Circuit C7 supplies one 140kW load with cos φ = 0.85, so the total load current is:
 
<math>I_b=\frac{140 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=238 A</math>


<math>I_B=\frac{150 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=255 A</math>
One single-core PVC-insulated copper cable will be used for each phase.  


One single-core PVC-insulated copper cable will be used for each phase. The cables will be laid on cable trays according to method F.
The cables will be laid on cable trays according to method F.


Each conductor will therefore carry 255A. {{FigureRef|G21a}} indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm<sup>2</sup>.
Each conductor will therefore carry 238 A. {{FigureRef|G21}} indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95 mm².


The resistance and the inductive reactance for a length of 20 metres is:
The resistance and the inductive reactance for a length of 5 metres is:


<math>R=\frac{23.7\times 5}{95}=1.25m\Omega</math> (cable resistance: 23.7 mΩ.mm<sup>2</sup>/m)  
<math>R=\frac{18.51\times 5}{95}=0.97m\Omega</math> (cable resistance: 18.51 mΩ.mm<sup>2</sup>/m)  


<math>X = 0.8 \times 5 = 0.4m\Omega</math> (cable reactance: 0.08 mΩ/m)
<math>X = 0.08 \times 5 = 0.4m\Omega</math> (cable reactance: 0.08 mΩ/m)


=== Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 ===
=== Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 ===
Line 331: Line 333:
|-
|-
| {{Table_HC2}} | '''Sub-total'''
| {{Table_HC2}} | '''Sub-total'''
| {{Table_HC2}} | '''3.16'''  
| {{Table_HC2}} | '''3.13'''  
| {{Table_HC2}} | '''11.55'''
| {{Table_HC2}} | '''11.4'''
| {{Table_HC2}} | '''11.97'''  
| {{Table_HC2}} | '''11.8'''  
| {{Table_HC2}} | '''20.2'''
| {{Table_HC2}} | '''21'''
|-
|-
| Cable C3  
| Cable C3  
| 2.37
| 1.54
| 1.6
| 0.80
|  
|  
|  
|  
|-
|-
| {{Table_HC2}} | '''Sub-total'''  
| {{Table_HC2}} | '''Sub-total'''  
| {{Table_HC2}} | '''5.53'''  
| {{Table_HC2}} | '''4.67'''  
| {{Table_HC2}} | '''13.15'''  
| {{Table_HC2}} | '''12.15'''  
| {{Table_HC2}} | '''14.26'''  
| {{Table_HC2}} | '''13.0'''  
| {{Table_HC2}} | '''17'''
| {{Table_HC2}} | '''19'''
|-
|-
| Cable C7  
| Cable C7  
| 1.18
| 0.97
| 0.4
| 0.40
|  
|  
|  
|  
|-
|-
| {{Table_HC2}} | '''Sub-total'''
| {{Table_HC2}} | '''Sub-total'''
| {{Table_HC2}} | '''6.71 '''
| {{Table_HC2}} | '''5.64 '''
| {{Table_HC2}} | '''13.55'''  
| {{Table_HC2}} | '''12.55'''  
| {{Table_HC2}} | '''15.12'''  
| {{Table_HC2}} | '''13.8'''  
| {{Table_HC2}} | '''16'''
| {{Table_HC2}} | '''18'''
|-
|-
{{TableEnd|Tab1244|G67|Example of short-circuit current evaluation}}
{{TableEnd|Tab1244|G67|Example of short-circuit current evaluation}}
Line 364: Line 366:
=== The protective conductor ===
=== The protective conductor ===


When using the adiabatic method, the minimum c.s.a. for the protective earth conductor (PE) can be calculated by the formula given in {{FigureRef|G58}}:
Generally, for circuits with phase conductor c.s.a. Sph u 50 mm², the PE conductor minimum c.s.a. will be Sph / 2.
 
The proposed c.s.a. of the PE conductor will thus be 1x240 mm² for circuit C1, 1x120 mm² for C3, and 1x50 mm² for C7.
 
The minimum c.s.a. for the protective earth conductor (PE) can be calculated using the adiabatic method (formula given in {{FigRef|G59}}):


<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}</math>  
<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}</math>  


For circuit C1, I = 20.2kA and k = 143.
For circuit C1, I = 21 kA and k = 143.


t is the maximum operating time of the MV protection, e.g. 0.5s
t is the maximum operating time of the MV protection, e.g. 0.5 s


This gives:
This gives:


<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}=\frac {20200 \times \sqrt {0.5} }{143}=100 mm^2</math>
<math>S_{PE}=\frac{\sqrt {I^2 . t} }{k}=\frac {21000 \times \sqrt {0.5} }{143}=104 mm^2</math>


A single 120 mm<sup>2</sup> conductor is therefore largely sufficient, provided that it also satisfies the requirements for indirect contact protection (i.e. that its impedance is sufficiently low).
A single 120 mm² conductor is therefore largely sufficient, provided that it also satisfies the requirements for fault protection (indirect contact), i.e. that its impedance is sufficiently low).


Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm<sup>2</sup>, the PE conductor minimum c.s.a. will be Sph / 2. Then, for circuit C3, the PE conductor will be 95mm<sup>2</sup>, and for circuit C7, the PE conductor will be 50mm<sup>2</sup>.
=== Fault protection (protection against indirect contact) ===


=== Protection against indirect-contact hazards ===
For TN earthing system, the minimum value of Lmax is given by phase to earth fault (highest impedance).  [[TN system - Protection against indirect contact#Conventional_method|Conventional_method]] details the calculation of typical phase-to-earth fault and maximum circuit length calculation.


For circuit C3 of {{FigureRef|G65}}, [[TN system - Protection against indirect contact#Tables|Figures F41 and F40]], or the formula given in [[TN system - Protection against indirect contact#Conventional_method|Conventional_method]] may be used for a 3-phase 4-wire circuit.
In this example (3-phase 4-wire circuit), the maximum permitted length of the circuit is given by the formula:


The maximum permitted length of the circuit is given by:
<math>L_{max}=\frac{0.8 \times U_0 \times S_{ph} }{\rho \times \left ( 1 + m \right )\times I_a }</math>


<math>L_{max}=\frac{0.8 \times U_0 \times S_{ph} }{\rho \times \left ( 1 + m \right )\times I_a }</math>
where m = Sph / SPE


<math>L_{max}=\frac{0.8 \times 230 \times 2 \times 95}{23.7 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 } = 71 m</math>
For circuit C3, this gives:


(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit-breaker operates).
<math>L_{max}=\frac{0.8 \times 230 \times 2 \times 120}{23.7 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 } = 90 m</math>
 
(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit breaker operates).


The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.
The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.


=== Voltage drop ===
=== Voltage drop ===
The voltage drop is calculated using the data given in Fig. G30, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).


The voltage drop is calculated using the data given in {{FigureRef|G28}}, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).
The results are summarized on {{FigureRef|G71}}:
 
The results are summarized on {{FigureRef|G68}}


The total voltage drop at the end of cable C7 is then: 0.77%.  
The total voltage drop at the end of cable C7 is then: 0.73 %.


{{TableStart|Tab1245|3col}}
{{TableStart|Tab1245|3col}}
Line 411: Line 418:
| c.s.a.
| c.s.a.
| 2 x 240mm<sup>2</sup>  
| 2 x 240mm<sup>2</sup>  
| 2 x 95mm<sup>2</sup>  
| 2 x 120mm<sup>2</sup>  
| 1 x 95mm<sup>2</sup>
| 1 x 95mm<sup>2</sup>
|-
|-
| ∆U per conductor(V/A/km)
| ∆U per conductor(V/A/km)
see {{FigRef|G28}}  
see {{FigRef|G30}}  
| 0.22  
| 0.22  
| 0.43
| 0.36
| 0.43
| 0.43
|-
|-
| Load current (A)  
| Load current (A)  
| 866
| 909
| 509
| 526
| 255
| 238
|-
|-
| Length (m)  
| Length (m)  
Line 431: Line 438:
|-
|-
| Voltage drop (V)  
| Voltage drop (V)  
| 0.48
| 0.50
| 2.19
| 1.89
| 0.55
| 0.51
|-
|-
| Voltage drop (%)  
| Voltage drop (%)  
| 0.12  
| 0.12  
| 0.55
| 0.47
| 0.14
| 0.13
|-
|-
{{TableEnd|Tab1245|G68|Voltage drop introduced by the different cables}}
{{TableEnd|Tab1245|G68|Voltage drop introduced by the different cables}}

Revision as of 03:14, 10 May 2018


Worked example of cable calculation

(see Fig. G65)

The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.

The single-line diagram is shown in Figure G65 below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G69. This study was carried out with Ecodial (a Schneider Electric software).

This is followed by the same calculations carried out by the simplified method described in this guide.

Fig. G65 – Example of single-line diagram

Calculation using software Ecodial

General network characteristics Cable C3
Earthing system TN-S Length 20
Neutral distributed No Maximum load current (A) 518
Voltage (V) 400 Type of insulation PVC
Frequency (Hz) 50 Ambient temperature (°C) 30
Upstream fault level (MVA) 500 Conductor material Copper
Resistance of MV network (mΩ) 0.035 Single-core or multi-core cable Single
Reactance of MV network (mΩ) 0.351 Installation method F31
Transformer T1 Phase conductor selected csa (mm2) 2 x 120
Rating (kVA) 630 Neutral conductor selected csa (mm2) 2 x 120
Short-circuit impedance voltage (%) 4 PE conductor selected csa (mm2) 1 x 120
Load-losses (PkrT) (W) 7100 Cable voltage drop ΔU (%) 0.459
No-load voltage (V) 420 Total voltage drop ΔU (%) 0.583
Rated voltage (V) 400 3-phase short-circuit current Ik3 (kA) 21.5
Cable C1 1-phase-to-earth fault current Ief (kA) 18
Length (m) 5 Distribution Board B6
Maximum load current (A) 909 Reference Prisma Plus G
Type of insulation PVC Rated current (A) 630
Ambient temperature (°C) 30 Circuit breaker Q7
Conductor material Copper Load current (A) 238
Single-core or multi-core cable Single Type Compact
Installation method 31F Reference NSX250B
Number of layers 1 Rated current (A) 250
Phase conductor selected csa (mm²) 2 x 240 Number of poles and protected poles 3P3d
Neutral conductor selected csa (mm²) 2 x 240 Tripping unit Micrologic 5.2 E
PE conductor selected csa (mm²) 1 x 240 Overload trip Ir (A) 238
Voltage drop ΔU (%) 0.124 Short-delay trip Im / Isd (A) 2380
3-phase short-circuit current Ik3 (kA) 21.5 Cable C7
Earth fault current Ief (kA) 18 Length 5
Circuit breaker Q1 Maximum load current (A) 238
Load current (A) 909 Type of insulation PVC
Type Masterpact Ambient temperature (°C) 30
Reference MTZ2 10N1 Conductor material Copper
Rated current (A) 1000 Single-core or multi-core cable Single
Number of poles and protected poles 4P4d Installation method F31
Tripping unit Micrologic 5.0X Phase conductor selected csa (mm²) 1 x 95
Overload trip Ir (A) 920 Neutral conductor selected csa (mm²) 1 x 95
Short-delay trip Im / Isd (A) 9200 PE conductor selected csa (mm²) 1 x 95
Tripping time tm (ms) 50 Cable voltage drop ΔU (%) 0.131
Switchboard B1 Total voltage drop ΔU (%) 0.714
Reference Prisma Plus P 3-phase short-circuit current Ik3 (kA) 18.0
Rated current (A) 1000 1-phase-to-earth fault current Ief (kA) 14.2
Circuit breaker Q3
Load current (A) 518
Type Compact
Reference NSX630F
Rated current (A) 630
Number of poles and protected poles 4P4d
Tripping unit Micrologic 5.3 E
Overload trip Ir (A) 518
Short-delay trip Im / Isd (A) 1036
Fig. G66 – Partial results of calculation carried out with Ecodial software (Schneider Electric). The calculation is performed according to Cenelec TR50480

The same calculation using the simplified method recommended in this guide

Dimensioning circuit C1

The MV/LV 630 kVA transformer has a rated voltage of 400 V. Circuit C1 must be suitable for a current of:

[math]\displaystyle{ I_B=\frac{630 \times 10^3}{\sqrt 3 \times 400}=909 A }[/math] per phase

Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method 31F.

Each conductor will therefore carry 455 A. Figure G21 indicates that for 3 loaded conductors with PVC insulation, the required c.s.a. is 240 mm².

The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:

[math]\displaystyle{ R=\frac{18.51 \times 5}{240\times 2}=0.19 m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m at 20 °C))

[math]\displaystyle{ X = 0,08 \times 5 = 0.4 m\Omega }[/math] (cable reactance: 0.08 mΩ/m, 2 cables in parallel)

Dimensioning circuit C3

Circuit C3 supplies two loads, in total 310 kW with cos φ = 0.85, so the total load current is:

[math]\displaystyle{ I_B=\frac{310 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=526 A }[/math]

Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.

Each conductor will therefore carry 263 A. Figure G21 indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 120 mm².

The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:

[math]\displaystyle{ R=\frac{18.51\times 20}{120\times 2}=1.54 m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m at 20 °C)

[math]\displaystyle{ X = 0.08/ 2 \times 20 = 1.6m \Omega }[/math] (cable reactance: 0.08 mΩ/m, 2 cables in parallel)

Dimensioning circuit C7

Circuit C7 supplies one 140kW load with cos φ = 0.85, so the total load current is:

[math]\displaystyle{ I_b=\frac{140 \times 10^3}{\sqrt 3 \times 400 \times 0.85}=238 A }[/math]

One single-core PVC-insulated copper cable will be used for each phase.

The cables will be laid on cable trays according to method F.

Each conductor will therefore carry 238 A. Figure G21 indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95 mm².

The resistance and the inductive reactance for a length of 5 metres is:

[math]\displaystyle{ R=\frac{18.51\times 5}{95}=0.97m\Omega }[/math] (cable resistance: 18.51 mΩ.mm2/m)

[math]\displaystyle{ X = 0.08 \times 5 = 0.4m\Omega }[/math] (cable reactance: 0.08 mΩ/m)

Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7

(see Fig. G67)

Circuit components R (mΩ) X (mΩ) Z (mΩ) Ikmax (kA)
Upstream MV network, 500MVA fault level (see Fig. G34) 0,035 0,351
Transformer 630kVA, 4% (see Fig. G35) 2.9 10.8
Cable C1 0.23 0.4
Sub-total 3.13 11.4 11.8 21
Cable C3 1.54 0.80
Sub-total 4.67 12.15 13.0 19
Cable C7 0.97 0.40
Sub-total 5.64 12.55 13.8 18
Fig. G67 – Example of short-circuit current evaluation

The protective conductor

Generally, for circuits with phase conductor c.s.a. Sph u 50 mm², the PE conductor minimum c.s.a. will be Sph / 2.

The proposed c.s.a. of the PE conductor will thus be 1x240 mm² for circuit C1, 1x120 mm² for C3, and 1x50 mm² for C7.

The minimum c.s.a. for the protective earth conductor (PE) can be calculated using the adiabatic method (formula given in Fig. G59):

[math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t} }{k} }[/math]

For circuit C1, I = 21 kA and k = 143.

t is the maximum operating time of the MV protection, e.g. 0.5 s

This gives:

[math]\displaystyle{ S_{PE}=\frac{\sqrt {I^2 . t} }{k}=\frac {21000 \times \sqrt {0.5} }{143}=104 mm^2 }[/math]

A single 120 mm² conductor is therefore largely sufficient, provided that it also satisfies the requirements for fault protection (indirect contact), i.e. that its impedance is sufficiently low).

Fault protection (protection against indirect contact)

For TN earthing system, the minimum value of Lmax is given by phase to earth fault (highest impedance). Conventional_method details the calculation of typical phase-to-earth fault and maximum circuit length calculation.

In this example (3-phase 4-wire circuit), the maximum permitted length of the circuit is given by the formula:

[math]\displaystyle{ L_{max}=\frac{0.8 \times U_0 \times S_{ph} }{\rho \times \left ( 1 + m \right )\times I_a } }[/math]

where m = Sph / SPE

For circuit C3, this gives:

[math]\displaystyle{ L_{max}=\frac{0.8 \times 230 \times 2 \times 120}{23.7 \times 10^{-3}\times \left ( 1 + 2 \right )\times 630\times 11 } = 90 m }[/math]

(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit breaker operates).

The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.

Voltage drop

The voltage drop is calculated using the data given in Fig. G30, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).

The results are summarized on Figure G71:

The total voltage drop at the end of cable C7 is then: 0.73 %.

C1 C3 C7
c.s.a. 2 x 240mm2 2 x 120mm2 1 x 95mm2
∆U per conductor(V/A/km)

see Fig. G30

0.22 0.36 0.43
Load current (A) 909 526 238
Length (m) 5 20 5
Voltage drop (V) 0.50 1.89 0.51
Voltage drop (%) 0.12 0.47 0.13
Fig. G68 – Voltage drop introduced by the different cables

ru:Пример расчета кабелей zh:电缆计算的例题

Share