User:LMischler/Img-2018-E: Difference between revisions

From Electrical Installation Guide
(guide 2018 (chapter E - 13/06))
(updated with new content (internal arc))
Line 3: Line 3:
{{FigImage|DB422162_EN|svg|E4|TN-C system '''(DB422162_EN)'''}}
{{FigImage|DB422162_EN|svg|E4|TN-C system '''(DB422162_EN)'''}}
{{FigImage|DB422163|svg|E5|TN-S system '''(DB422163)'''}}
{{FigImage|DB422163|svg|E5|TN-S system '''(DB422163)'''}}
{{FigImage|DB422164_EN|svg|E6|TN-C-S system '''(DB422164_EN)'''}}
{{FigImage|DB422164_EN|svg|E6|TN-C-S system '''(DB422164_EN)'''}}
{{FigImage|DB422165_EN|svg|E7|Connection of the PEN conductor in the TN-C system  '''(DB422165_EN)'''}}
{{FigImage|DB422165_EN|svg|E7|Connection of the PEN conductor in the TN-C system  '''(DB422165_EN)'''}}
{{FigImage|DB422166_EN|svg|E8|IT system (isolated neutral) '''(DB422166_EN)'''}}
{{FigImage|DB422166_EN|svg|E8|IT system (isolated neutral) '''(DB422166_EN)'''}}
{{FigImage|DB422167_EN|svg|E9|Leakage impedance to earth in IT system '''(DB422167_EN)'''}}
{{FigImage|DB422167_EN|svg|E9|Leakage impedance to earth in IT system '''(DB422167_EN)'''}}
{{FigImage|DB422168_EN|svg|E10|Impedance equivalent to leakage impedances in an IT system '''(DB422168_EN)'''}}
{{FigImage|DB422168_EN|svg|E10|Impedance equivalent to leakage impedances in an IT system '''(DB422168_EN)'''}}
{{FigImage|DB422169_EN|svg|E11|IT system (impedance-earthed neutral) '''(DB422169_EN)'''}}
{{FigImage|DB422169_EN|svg|E11|IT system (impedance-earthed neutral) '''(DB422169_EN)'''}}
{{FigImage|DB422170|svg|E12|TT system '''(DB422170)'''}}
{{FigImage|DB422170|svg|E12|TT system '''(DB422170)'''}}
{{FigImage|DB422171|svg|E13|TT system '''(DB422171)'''}}
{{FigImage|DB422171|svg|E13|TN-C system '''(DB422171)'''}}
{{FigImage|DB422172|svg|E14|TT system '''(DB422172)'''}}
{{FigImage|DB422172|svg|E14|TN-S system '''(DB422172)'''}}
{{FigImage|DB422173_EN|svg|E15|IT system '''(DB422173_EN)'''}}
{{FigImage|DB422173_EN|svg|E15|IT system '''(DB422173_EN)'''}}
[[File:DB422174a.png|'''(DB422174a)''']]
[[File:DB422174a.png|'''(DB422174a)''']]
Line 34: Line 34:
{{FigImage|DB422178|svg|E21|Earthing rods connected in parallel '''(DB422178)'''}}
{{FigImage|DB422178|svg|E21|Earthing rods connected in parallel '''(DB422178)'''}}
{{FigImage|DB422179|svg|E22|Vertical plate - 2 mm thickness (Cu) '''(DB422179)'''}}
{{FigImage|DB422179|svg|E22|Vertical plate - 2 mm thickness (Cu) '''(DB422179)'''}}
{{FigImage|DB422180|svg|E25|Earthing rods '''(DB422180)'''}}
{{FigImage|DB422180|svg|E25|Measurement of the resistance to earth of the earth electrode of an installation by means of an ammeter '''(DB422180)'''}}
{{Gallery|E26|Measurement of the resistance to the mass of earth of electrode (X) using an earth-electrode-testing ohmmeter||  
{{Gallery|E26|Measurement of the resistance to the mass of earth of electrode (X) using an earth-electrode-testing ohmmeter||  
|DB422181a_EN.svg||'''(DB422181a_EN)'''
|DB422181a_EN.svg||'''(DB422181a_EN)'''
Line 41: Line 41:
[[File:cableway.jpg|'''(cableway)''']]
[[File:cableway.jpg|'''(cableway)''']]
[[File:conductor.jpg|'''(conductor)''']]
[[File:conductor.jpg|'''(conductor)''']]
{{FigImage|PB116717|jpg|E27|A sub-distribution switchboard (Prisma Plus G) '''(PB116717)'''}}
{{Gallery|E27|[a] A main LV switchboard - MLVS - (Prisma P) with incoming circuits in the form of busways - [b] A LV motor control centre - MCC - (Okken)||  
{{Gallery|E28|[a] A main LV switchboard - MLVS - (Prisma Plus P) with incoming circuits in the form of busways - [b] A LV motor control centre - MCC - (Okken)||  
|PB116715.jpg||'''(PB116715)'''
|PB116715.jpg||'''(PB116715)'''
|PB116716.jpg||'''(PB116716)'''}}
|PB116716.jpg||'''(PB116716)'''}}
{{Gallery|E29|Final distribution switchboards [a] Prisma Plus G Pack; [b] Kaedra; [c] mini-Pragma||  
{{FigImage|PB116717|jpg|E28|A sub-distribution switchboard (Prisma G) '''(PB116717)'''}}
{{Gallery|E29|Final distribution switchboards [a] Resi9 ; [b] Kaedra; [c] Prisma Pack 160||  
|PB116718.jpg||'''(PB116718)'''
|PB116718.jpg||'''(PB116718)'''
|PB116719.jpg||'''(PB116719)'''
|PB116719.jpg||'''(PB116719)'''
|PB116720.jpg||'''(PB116720)'''}}
|PB119921.jpg||'''(PB119921)'''}}
{{FigImage|PB116721|jpg|E30|Assembly of a final distribution switchboard with fixed functional units (Prisma Plus G) '''(PB116721)'''}}
{{FigImage|PB116721|jpg|E30|Assembly of a final distribution switchboard with fixed functional units (Prisma G) '''(PB116721)'''}}
{{FigImage|PB116722|jpg|E31|Distribution switchboard with disconnectable functional units '''(PB116722)'''}}
{{FigImage|PB116722|jpg|E31|Distribution switchboard with disconnectable functional units '''(PB116722)'''}}
{{FigImage|PB116723|jpg|E32|Distribution switchboard with withdrawable functional units in drawers '''(PB116723)'''}}
{{FigImage|PB116723|jpg|E32|Distribution switchboard with withdrawable functional units in drawers '''(PB116723)'''}}
{{FigImage|DB422182_EN|svg|E33|Main actors and responsibilities, as defined by the IEC 61439-1&2 standard '''(DB422182_EN)'''}}
{{FigImage|DB422182_EN|svg|E33|Main actors and responsibilities, as defined by the IEC 61439-1&2 standard '''(DB422182_EN)'''}}
{{FigImage|DB422183_EN|svg|E36|Representation of different forms of LV functional distribution switchboards '''(DB422183_EN)'''}}
{{FigImage|DB422183_EN|svg|E36|Representation of different forms of LV functional distribution switchboards '''(DB422183_EN)'''}}
{{FigImage|DB422184_EN|svg|E38|Conductor identification on a circuit breaker with a phase and a neutral '''(DB422184_EN)'''}}
{{FigImage|PB119918|jpg|E38|Example of totally insulated busbar reducing the risk of internal arc-fault ignition (Okken MCC vertical busbar, Schneider Electric) '''(PB119918)'''}}
{{FigImage|DB422185_EN|svg|E39|Radial distribution using cables in a hotel '''(DB422185_EN)'''}}
{{FigImage|PB119917|jpg|E39|Example of assembly prepared for internal arc test, with “indicators” visible on the front and side (Okken, Schneider Electric) '''(PB119917)'''}}
{{FigImage|DB422201_EN|svg|E40|Busbar trunking system design for distribution of currents from 25 to 4000 A '''(DB422201_EN)'''}}
{{FigImage|PB119920|jpg|E40|Example of arc-fault mitigation system (Okken + Vamp system) '''(PB119920)'''}}
{{FigImage|PB116725|jpg|E41|Radial distribution using busways '''(PB116725)'''}}
{{FigImage|DB422184_EN|svg|E42|Conductor identification on a circuit breaker with a phase and a neutral '''(DB422184_EN)'''}}
{{FigImage|DB422186_EN|svg|E42|Example of a set of 14 x 25A loads distributed along 34 meters (for busway, Canalis KS 250A) '''(DB422186_EN)'''}}
{{FigImage|DB422185_EN|svg|E43|Radial distribution using cables in a hotel '''(DB422185_EN)'''}}
{{FigImage|PB116726|jpg|E43|Rigid busbar trunking able to support light fittings: Canalis KBA or KBB (25 and 40 A) '''(PB116726)'''}}
{{FigImage|DB422201_EN|svg|E44|Busbar trunking system design for distribution of currents from 25 to 4000 A '''(DB422201_EN)'''}}
{{FigImage|PB116727|jpg|E44|A busway for medium power distribution: Canalis KN (40 up to 160 A) '''(PB116727)'''}}
{{FigImage|PB116725|jpg|E45|Radial distribution using busways '''(PB116725)'''}}
{{FigImage|PB116728|jpg|E45|A busway for medium power distribution: Canalis KS (100 up to 1000 A) '''(PB116728)'''}}
{{FigImage|DB422186_EN|svg|E46|Example of a set of 14 x 25A loads distributed along 34 meters (for busway, Canalis KS 250A) '''(DB422186_EN)'''}}
{{FigImage|PB116729|jpg|E46|A busway for high power distribution: Canalis KT (800 up to 5000 A) '''(PB116729)'''}}
{{FigImage|PB116726|jpg|E47|Rigid busbar trunking able to support light fittings: Canalis KBA or KBB (25 and 40 A) '''(PB116726)'''}}
{{FigImage|DB422187_EN|svg|E47|Appearance of a distorted current waveform due to harmonics '''(DB422187_EN)'''}}
{{FigImage|PB116727|jpg|E48|A busway for medium power distribution: Canalis KN (40 up to 160 A) '''(PB116727)'''}}
{{FigImage|DB422188|svg|E48|Line and neutral currents absorbed by single-phase non-linear loads connected between phase and neutral. '''(DB422188)'''}}
{{FigImage|PB116728|jpg|E49|A busway for medium power distribution: Canalis KS (100 up to 1000 A) '''(PB116728)'''}}
{{Gallery|E49|Examples of applications where the level of harmonics (THD) is either negligible or high, depending on the proportion of loads generating harmonics versus classical loads||  
{{FigImage|PB116729|jpg|E50|A busway for high power distribution: Canalis KT (800 up to 5000 A) '''(PB116729)'''}}
{{FigImage|DB422187_EN|svg|E51|Appearance of a distorted current waveform due to harmonics '''(DB422187_EN)'''}}
{{FigImage|DB422188|svg|E52|Line and neutral currents absorbed by single-phase non-linear loads connected between phase and neutral. '''(DB422188)'''}}
{{Gallery|E53|Examples of applications where the level of harmonics (THD) is either negligible or high, depending on the proportion of loads generating harmonics versus classical loads||  
|PB116730.jpg||'''(PB116730)'''
|PB116730.jpg||'''(PB116730)'''
|PB116731.jpg||'''(PB116731)'''}}
|PB116731.jpg||'''(PB116731)'''}}
{{FigImage|DB422189_EN|svg|E50|Typical harmonic phase current spectrum for single-phase non-linear loads '''(DB422189_EN)'''}}
{{FigImage|DB422189_EN|svg|E54|Typical harmonic phase current spectrum for single-phase non-linear loads '''(DB422189_EN)'''}}
{{FigImage|DB422191_EN|svg|E51|Line current for different ratios of non-linear load '''(DB422191_EN)'''}}
{{FigImage|DB422190_EN|svg|E55|Typical harmonic neutral current spectrum for single-phase non-linear loads '''(DB422190_EN)'''}}
{{FigImage|DB422192_EN|svg|E52|Neutral conductor load factor as a function of the 3rd harmonic level. '''(DB422192_EN)'''}}
{{FigImage|DB422191_EN|svg|E56|Line current for different ratios of non-linear load '''(DB422191_EN)'''}}
{{FigImage|DB422193|svg|E53|Double-neutral installation for cable solution is not directly applicable for busway solution, due to their very different thermal dissipation behaviour. '''(DB422193)'''}}
{{FigImage|DB422192_EN|svg|E57|Neutral conductor load factor as a function of the 3rd harmonic level. '''(DB422192_EN)'''}}
{{FigImage|DB422194_EN|svg|E54|Illustration of the overheating risk with standard busway sizing in presence of high level of 3rd harmonics '''(DB422194_EN)'''}}
{{FigImage|DB422193|svg|E58|Double-neutral installation for cable solution is not directly applicable for busway solution, due to their very different thermal dissipation behaviour. '''(DB422193)'''}}
{{FigImage|DB422195_EN|svg|E55|Cross section architecture of 2 different busbar systems. '''(DB422195_EN)'''}}
{{FigImage|DB422194_EN|svg|E59|Illustration of the overheating risk with standard busway sizing in presence of high level of 3rd harmonics '''(DB422194_EN)'''}}
{{FigImage|DB422196|svg|E56|The most effective solution {{=}} reduce the current density in ALL conductors, by selecting proper busway rating (single-neutral) '''(DB422196)'''}}
{{FigImage|DB422195_EN|svg|E60|Cross section architecture of 2 different busbar systems. '''(DB422195_EN)'''}}
{{FigImage|DB422197_EN|svg|E57|Cross sectional view of a standard busway  without and with harmonics '''(DB422197_EN)'''}}
{{FigImage|DB422196|svg|E61|The most effective solution {{=}} reduce the current density in ALL conductors, by selecting proper busway rating (single-neutral) '''(DB422196)'''}}
{{Gallery|E58|Comparison between double-neutral busway solution and properly selected single-neutral solution||  
{{FigImage|DB422197_EN|svg|E62|Cross sectional view of a standard busway  without and with harmonics '''(DB422197_EN)'''}}
{{Gallery|E63|Comparison between double-neutral busway solution and properly selected single-neutral solution||  
|DB422198a_EN.svg||'''(DB422198a_EN)'''
|DB422198a_EN.svg||'''(DB422198a_EN)'''
|DB422198b.svg||'''(DB422198b)'''}}
|DB422198b.svg||'''(DB422198b)'''}}
{{Gallery|E59|Coherent system approach for all components of the electrical installation||  
{{Gallery|E64|Coherent system approach for all components of the electrical installation||  
|PB116184-30.jpg||'''(PB116184-30)'''
|PB116184-30.jpg||'''(PB116184-30)'''
|PB116732.jpg||'''(PB116732)'''}}
|PB116732.jpg||'''(PB116732)'''}}
{{FigImage|DB422190_EN|svg|E60|Typical harmonic neutral current spectrum for single-phase non-linear loads '''(DB422190_EN)'''}}
{{FigImage|DB422199_EN|svg|E66|IP Code arrangement  '''(DB422199_EN)'''}}
{{FigImage|DB422199_EN|svg|N63|IP Code arrangement  '''(DB422199_EN)'''}}
{{FigImage|DB422200_EN|svg|E67|Elements of the IP Code '''(DB422200_EN)'''}}
{{FigImage|DB422200_EN|svg|N64|Elements of the IP Code '''(DB422200_EN)'''}}

Revision as of 14:40, 16 July 2018

Fig. E1 – An example of a block of flats in which the main earthing terminal (6) provides the main equipotential connection; the removable link (7) allows an earth-electrode-resistance check (DB422160_EN)
Fig. E3 – TT System (DB422161_EN)
Fig. E4 – TN-C system (DB422162_EN)
Fig. E5 – TN-S system (DB422163)
Fig. E6 – TN-C-S system (DB422164_EN)
Fig. E7 – Connection of the PEN conductor in the TN-C system (DB422165_EN)
Fig. E8 – IT system (isolated neutral) (DB422166_EN)
Fig. E9 – Leakage impedance to earth in IT system (DB422167_EN)
Fig. E10 – Impedance equivalent to leakage impedances in an IT system (DB422168_EN)
Fig. E11 – IT system (impedance-earthed neutral) (DB422169_EN)
Fig. E12 – TT system (DB422170)
Fig. E13 – TN-C system (DB422171)
Fig. E14 – TN-S system (DB422172)
Fig. E15 – IT system (DB422173_EN)

(DB422174a) (DB422174a) (DB422174b) (DB422174c) (DB422174d) (DB422174e) (DB422174f) (DB422174g) (DB422174h) (DB422174i) (DB422174j) (DB422174k) (DB422174l) (DB422174m) (DB422174n) (DB422174o)

Fig. E18 – TN-S island within an IT system (DB422175_EN)
Fig. E19 – IT islands within a TN-S system (DB422176_EN)
Fig. E20 – Conductor buried below the level of the foundations, i.e. not in the concrete (DB422177)
Fig. E21 – Earthing rods connected in parallel (DB422178)
Fig. E22 – Vertical plate - 2 mm thickness (Cu) (DB422179)
Fig. E25 – Measurement of the resistance to earth of the earth electrode of an installation by means of an ammeter (DB422180)

(cable) (cableway) (conductor)

Fig. E28 – A sub-distribution switchboard (Prisma G) (PB116717)
Fig. E30 – Assembly of a final distribution switchboard with fixed functional units (Prisma G) (PB116721)
Fig. E31 – Distribution switchboard with disconnectable functional units (PB116722)
Fig. E32 – Distribution switchboard with withdrawable functional units in drawers (PB116723)
Fig. E33 – Main actors and responsibilities, as defined by the IEC 61439-1&2 standard (DB422182_EN)
Fig. E36 – Representation of different forms of LV functional distribution switchboards (DB422183_EN)
Fig. E38 – Example of totally insulated busbar reducing the risk of internal arc-fault ignition (Okken MCC vertical busbar, Schneider Electric) (PB119918)
Fig. E39 – Example of assembly prepared for internal arc test, with “indicators” visible on the front and side (Okken, Schneider Electric) (PB119917)
Fig. E40 – Example of arc-fault mitigation system (Okken + Vamp system) (PB119920)
Fig. E42 – Conductor identification on a circuit breaker with a phase and a neutral (DB422184_EN)
Fig. E43 – Radial distribution using cables in a hotel (DB422185_EN)
Fig. E44 – Busbar trunking system design for distribution of currents from 25 to 4000 A (DB422201_EN)
Fig. E45 – Radial distribution using busways (PB116725)
Fig. E46 – Example of a set of 14 x 25A loads distributed along 34 meters (for busway, Canalis KS 250A) (DB422186_EN)
Fig. E47 – Rigid busbar trunking able to support light fittings: Canalis KBA or KBB (25 and 40 A) (PB116726)
Fig. E48 – A busway for medium power distribution: Canalis KN (40 up to 160 A) (PB116727)
Fig. E49 – A busway for medium power distribution: Canalis KS (100 up to 1000 A) (PB116728)
Fig. E50 – A busway for high power distribution: Canalis KT (800 up to 5000 A) (PB116729)
Fig. E51 – Appearance of a distorted current waveform due to harmonics (DB422187_EN)
Fig. E52 – Line and neutral currents absorbed by single-phase non-linear loads connected between phase and neutral. (DB422188)
Fig. E54 – Typical harmonic phase current spectrum for single-phase non-linear loads (DB422189_EN)
Fig. E55 – Typical harmonic neutral current spectrum for single-phase non-linear loads (DB422190_EN)
Fig. E56 – Line current for different ratios of non-linear load (DB422191_EN)
Fig. E57 – Neutral conductor load factor as a function of the 3rd harmonic level. (DB422192_EN)
Fig. E58 – Double-neutral installation for cable solution is not directly applicable for busway solution, due to their very different thermal dissipation behaviour. (DB422193)
Fig. E59 – Illustration of the overheating risk with standard busway sizing in presence of high level of 3rd harmonics (DB422194_EN)
Fig. E60 – Cross section architecture of 2 different busbar systems. (DB422195_EN)
Fig. E61 – The most effective solution = reduce the current density in ALL conductors, by selecting proper busway rating (single-neutral) (DB422196)
Fig. E62 – Cross sectional view of a standard busway without and with harmonics (DB422197_EN)
Fig. E66 – IP Code arrangement (DB422199_EN)
Fig. E67 – Elements of the IP Code (DB422200_EN)