User:LMischler/Img-2018-E: Difference between revisions

From Electrical Installation Guide
(updated with new content (internal arc))
No edit summary
 
Line 41: Line 41:
[[File:cableway.jpg|'''(cableway)''']]
[[File:cableway.jpg|'''(cableway)''']]
[[File:conductor.jpg|'''(conductor)''']]
[[File:conductor.jpg|'''(conductor)''']]
{{Gallery|E27|[a] A main LV switchboard - MLVS - (Prisma P) with incoming circuits in the form of busways - [b] A LV motor control centre - MCC - (Okken)||  
{{Gallery|E27|[a] A main LV switchboard - MLVS - (Prisma P) with incoming circuits in the form of busways - [b] A LV motor control centre - MCC - (Okken)||  
|PB116715.jpg||'''(PB116715)'''
|PB116715.jpg||'''(PB116715)'''
|PB116716.jpg||'''(PB116716)'''}}
|PB116716.jpg||'''(PB116716)'''}}

Latest revision as of 14:54, 19 July 2018

Fig. E1 – An example of a block of flats in which the main earthing terminal (6) provides the main equipotential connection; the removable link (7) allows an earth-electrode-resistance check (DB422160_EN)
Fig. E3 – TT System (DB422161_EN)
Fig. E4 – TN-C system (DB422162_EN)
Fig. E5 – TN-S system (DB422163)
Fig. E6 – TN-C-S system (DB422164_EN)
Fig. E7 – Connection of the PEN conductor in the TN-C system (DB422165_EN)
Fig. E8 – IT system (isolated neutral) (DB422166_EN)
Fig. E9 – Leakage impedance to earth in IT system (DB422167_EN)
Fig. E10 – Impedance equivalent to leakage impedances in an IT system (DB422168_EN)
Fig. E11 – IT system (impedance-earthed neutral) (DB422169_EN)
Fig. E12 – TT system (DB422170)
Fig. E13 – TN-C system (DB422171)
Fig. E14 – TN-S system (DB422172)
Fig. E15 – IT system (DB422173_EN)

(DB422174a) (DB422174a) (DB422174b) (DB422174c) (DB422174d) (DB422174e) (DB422174f) (DB422174g) (DB422174h) (DB422174i) (DB422174j) (DB422174k) (DB422174l) (DB422174m) (DB422174n) (DB422174o)

Fig. E18 – TN-S island within an IT system (DB422175_EN)
Fig. E19 – IT islands within a TN-S system (DB422176_EN)
Fig. E20 – Conductor buried below the level of the foundations, i.e. not in the concrete (DB422177)
Fig. E21 – Earthing rods connected in parallel (DB422178)
Fig. E22 – Vertical plate - 2 mm thickness (Cu) (DB422179)
Fig. E25 – Measurement of the resistance to earth of the earth electrode of an installation by means of an ammeter (DB422180)

(cable) (cableway) (conductor)

Fig. E28 – A sub-distribution switchboard (Prisma G) (PB116717)
Fig. E30 – Assembly of a final distribution switchboard with fixed functional units (Prisma G) (PB116721)
Fig. E31 – Distribution switchboard with disconnectable functional units (PB116722)
Fig. E32 – Distribution switchboard with withdrawable functional units in drawers (PB116723)
Fig. E33 – Main actors and responsibilities, as defined by the IEC 61439-1&2 standard (DB422182_EN)
Fig. E36 – Representation of different forms of LV functional distribution switchboards (DB422183_EN)
Fig. E38 – Example of totally insulated busbar reducing the risk of internal arc-fault ignition (Okken MCC vertical busbar, Schneider Electric) (PB119918)
Fig. E39 – Example of assembly prepared for internal arc test, with “indicators” visible on the front and side (Okken, Schneider Electric) (PB119917)
Fig. E40 – Example of arc-fault mitigation system (Okken + Vamp system) (PB119920)
Fig. E42 – Conductor identification on a circuit breaker with a phase and a neutral (DB422184_EN)
Fig. E43 – Radial distribution using cables in a hotel (DB422185_EN)
Fig. E44 – Busbar trunking system design for distribution of currents from 25 to 4000 A (DB422201_EN)
Fig. E45 – Radial distribution using busways (PB116725)
Fig. E46 – Example of a set of 14 x 25A loads distributed along 34 meters (for busway, Canalis KS 250A) (DB422186_EN)
Fig. E47 – Rigid busbar trunking able to support light fittings: Canalis KBA or KBB (25 and 40 A) (PB116726)
Fig. E48 – A busway for medium power distribution: Canalis KN (40 up to 160 A) (PB116727)
Fig. E49 – A busway for medium power distribution: Canalis KS (100 up to 1000 A) (PB116728)
Fig. E50 – A busway for high power distribution: Canalis KT (800 up to 5000 A) (PB116729)
Fig. E51 – Appearance of a distorted current waveform due to harmonics (DB422187_EN)
Fig. E52 – Line and neutral currents absorbed by single-phase non-linear loads connected between phase and neutral. (DB422188)
Fig. E54 – Typical harmonic phase current spectrum for single-phase non-linear loads (DB422189_EN)
Fig. E55 – Typical harmonic neutral current spectrum for single-phase non-linear loads (DB422190_EN)
Fig. E56 – Line current for different ratios of non-linear load (DB422191_EN)
Fig. E57 – Neutral conductor load factor as a function of the 3rd harmonic level. (DB422192_EN)
Fig. E58 – Double-neutral installation for cable solution is not directly applicable for busway solution, due to their very different thermal dissipation behaviour. (DB422193)
Fig. E59 – Illustration of the overheating risk with standard busway sizing in presence of high level of 3rd harmonics (DB422194_EN)
Fig. E60 – Cross section architecture of 2 different busbar systems. (DB422195_EN)
Fig. E61 – The most effective solution = reduce the current density in ALL conductors, by selecting proper busway rating (single-neutral) (DB422196)
Fig. E62 – Cross sectional view of a standard busway without and with harmonics (DB422197_EN)
Fig. E66 – IP Code arrangement (DB422199_EN)
Fig. E67 – Elements of the IP Code (DB422200_EN)