Worked example of cable calculation: Difference between revisions

From Electrical Installation Guide
No edit summary
Line 24: Line 24:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''General network characteristics '''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''General network characteristics '''  
|
|  
|  
| valign="top" align="left" | Number of poles and protected poles  
| valign="top" align="left" | Number of poles and protected poles  
Line 29: Line 30:
|-
|-
| Earthing system  
| Earthing system  
|
| TN-S  
| TN-S  
|  
|  
Line 35: Line 37:
|-
|-
| Neutral distributed  
| Neutral distributed  
|
| No  
| No  
|  
|  
Line 41: Line 44:
|-
|-
| Voltage (V)  
| Voltage (V)  
|
| 400  
| 400  
|  
|  
Line 47: Line 51:
|-
|-
| Frequency (Hz)  
| Frequency (Hz)  
|
| 50  
| 50  
|  
|  
Line 52: Line 57:
|-
|-
| Upstream fault level (MVA)  
| Upstream fault level (MVA)  
|
| 500  
| 500  
|  
|  
Line 58: Line 64:
|-
|-
| Resistance of MV network (mΩ)  
| Resistance of MV network (mΩ)  
|
| 0.0351  
| 0.0351  
|  
|  
Line 64: Line 71:
|-
|-
| Reactance of MV network (mΩ)  
| Reactance of MV network (mΩ)  
|
| 0.351  
| 0.351  
|  
|  
Line 70: Line 78:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Transformer T1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Transformer T1'''  
|
|  
|  
| Ambient temperature (°C)  
| Ambient temperature (°C)  
Line 75: Line 84:
|-
|-
| Rating (kVA)  
| Rating (kVA)  
|
| 630  
| 630  
|  
|  
Line 81: Line 91:
|-
|-
| Short-circuit impedance voltage (%)  
| Short-circuit impedance voltage (%)  
|
| 4  
| 4  
|  
|  
Line 87: Line 98:
|-
|-
| Transformer resistance RT (mΩ)  
| Transformer resistance RT (mΩ)  
|
| 3.472  
| 3.472  
|  
|  
Line 93: Line 105:
|-
|-
| Transformer reactance XT (mΩ)  
| Transformer reactance XT (mΩ)  
|
| 10.64  
| 10.64  
|  
|  
Line 99: Line 112:
|-
|-
| 3-phase short-circuit current Ik3 (kA)  
| 3-phase short-circuit current Ik3 (kA)  
|
| 21.54  
| 21.54  
|  
|  
Line 105: Line 119:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C1'''  
|
|  
|  
| PE conductor selected csa (mm2)  
| PE conductor selected csa (mm2)  
Line 110: Line 125:
|-
|-
| Length (m)  
| Length (m)  
|
| 5  
| 5  
|  
|  
Line 116: Line 132:
|-
|-
| Maximum load current (A)  
| Maximum load current (A)  
|
| 860<br>
| 860<br>
|  
|  
Line 122: Line 139:
|-
|-
| Type of insulation  
| Type of insulation  
|
| PVC  
| PVC  
|  
|  
Line 128: Line 146:
|-
|-
| Ambient temperature (°C)  
| Ambient temperature (°C)  
|
| 30  
| 30  
|  
|  
Line 134: Line 153:
|-
|-
| Conductor material  
| Conductor material  
|
| Copper  
| Copper  
|  
|  
Line 139: Line 159:
|-
|-
| Single-core or multi-core cable  
| Single-core or multi-core cable  
|
| Single  
| Single  
|  
|  
Line 145: Line 166:
|-
|-
| Installation method  
| Installation method  
|
| F  
| F  
|  
|  
Line 151: Line 173:
|-
|-
| Number of layers  
| Number of layers  
|
| 1  
| 1  
|  
|  
Line 156: Line 179:
|-
|-
| Phase conductor selected csa (mm2)  
| Phase conductor selected csa (mm2)  
|
| 2 x 240  
| 2 x 240  
|  
|  
Line 162: Line 186:
|-
|-
| Neutral conductor selected csa (mm2)  
| Neutral conductor selected csa (mm2)  
|
| 2 x 240  
| 2 x 240  
|  
|  
Line 168: Line 193:
|-
|-
| PE conductor selected csa (mm2)  
| PE conductor selected csa (mm2)  
|
| 1 x 120  
| 1 x 120  
|  
|  
Line 174: Line 200:
|-
|-
| Voltage drop ΔU (%)  
| Voltage drop ΔU (%)  
|
| 0.122  
| 0.122  
|  
|  
Line 180: Line 207:
|-
|-
| 3-phase short-circuit current Ik3 (kA)  
| 3-phase short-circuit current Ik3 (kA)  
|
| 21.5  
| 21.5  
|  
|  
Line 186: Line 214:
|-
|-
| Courant de défaut phase-terre Id (kA)  
| Courant de défaut phase-terre Id (kA)  
|
| 15.9  
| 15.9  
|  
|  
Line 192: Line 221:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit-breaker Q1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit-breaker Q1'''  
|
|  
|  
| Overload trip Ir (A)  
| Overload trip Ir (A)  
Line 197: Line 227:
|-
|-
| Load current (A)  
| Load current (A)  
|
| 860  
| 860  
|  
|  
Line 203: Line 234:
|-
|-
| Type  
| Type  
|
| Compact  
| Compact  
|  
|  
Line 208: Line 240:
|-
|-
| Reference  
| Reference  
|
| NS1000N  
| NS1000N  
|  
|  
Line 214: Line 247:
|-
|-
| Rated current (A)  
| Rated current (A)  
|
| 1000  
| 1000  
|  
|  
Line 220: Line 254:
|-
|-
| Number of poles and protected poles  
| Number of poles and protected poles  
|
| 4P4d  
| 4P4d  
|  
|  
Line 226: Line 261:
|-
|-
| Tripping unit  
| Tripping unit  
|
| Micrologic 5.0  
| Micrologic 5.0  
|  
|  
Line 232: Line 268:
|-
|-
| Overload trip Ir (A)  
| Overload trip Ir (A)  
|
| 900  
| 900  
|  
|  
Line 238: Line 275:
|-
|-
| Short-delay trip Im / Isd (A)  
| Short-delay trip Im / Isd (A)  
|
| 9000  
| 9000  
|  
|  
Line 244: Line 282:
|-
|-
| Tripping time tm (ms)  
| Tripping time tm (ms)  
|
| 50  
| 50  
|  
|  
Line 250: Line 289:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Switchboard B2'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Switchboard B2'''  
|
|  
|  
| Phase conductor selected csa (mm2)  
| Phase conductor selected csa (mm2)  
Line 255: Line 295:
|-
|-
| Reference  
| Reference  
|
| Linergy 1250  
| Linergy 1250  
|  
|  
Line 261: Line 302:
|-
|-
| Rated current (A)  
| Rated current (A)  
|
| 1050  
| 1050  
|  
|  
Line 267: Line 309:
|-
|-
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit breaker Q3'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit breaker Q3'''  
|
|  
|  
| Cable voltage drop ΔU (%)  
| Cable voltage drop ΔU (%)  
Line 272: Line 315:
|-
|-
| Load current (A)  
| Load current (A)  
|
| 509  
| 509  
|  
|  
Line 278: Line 322:
|-
|-
| Type  
| Type  
|
| Compact  
| Compact  
|  
|  
Line 284: Line 329:
|-
|-
| Reference  
| Reference  
|
| NSX630F  
| NSX630F  
|  
|  
Line 290: Line 336:
|-
|-
| Rated current (A)  
| Rated current (A)  
|
| 630  
| 630  
|  
|  

Revision as of 05:47, 28 January 2010

Worked example of cable calculation

(see Fig. G65)
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.
The single-line diagram is shown in Figure G65 below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G66. This study was carried out with Ecodial 3.4 software (a Schneider Electric product).
This is followed by the same calculations carried out by the simplified method described in this guide.


 

 

 

Fig. G65:Example of single-line diagram


Calculation using software Ecodial 3.3


 

General network characteristics  Number of poles and protected poles 4P4d
Earthing system TN-S Tripping unit Micrologic 2.3 
Neutral distributed No Overload trip Ir (A) 510
Voltage (V) 400 Short-delay trip Im / Isd (A)   5100
Frequency (Hz) 50   Cable C3
Upstream fault level (MVA) 500 Length   20
Resistance of MV network (mΩ) 0.0351 Maximum load current (A)   509
Reactance of MV network (mΩ) 0.351 Type of insulation   PVC
Transformer T1 Ambient temperature (°C)   30
Rating (kVA) 630 Conductor material   Copper
Short-circuit impedance voltage (%) 4 Single-core or multi-core cable   Single
Transformer resistance RT (mΩ) 3.472 Installation method    F
Transformer reactance XT (mΩ) 10.64 Phase conductor selected csa (mm2)   2 x 95
3-phase short-circuit current Ik3 (kA) 21.54 Neutral conductor selected csa (mm2)   2 x 95
Cable C1 PE conductor selected csa (mm2)   1 x 95
Length (m) 5 Cable voltage drop ΔU (%)   0.53
Maximum load current (A) 860
Total voltage drop ΔU (%)   0.65
Type of insulation PVC 3-phase short-circuit current Ik3 (kA)   19.1
Ambient temperature (°C) 30 1-phase-to-earth fault current Id (kA)   11.5
Conductor material Copper Switchboard B6  
Single-core or multi-core cable Single Reference Linergy 800
Installation method F Rated current (A)   750
Number of layers 1 Circuit-breaker Q7  
Phase conductor selected csa (mm2) 2 x 240  Load current (A) 255
Neutral conductor selected csa (mm2) 2 x 240 Type   Compact
PE conductor selected csa (mm2) 1 x 120 Reference   NSX400F
Voltage drop ΔU (%) 0.122 Rated current (A)   400
3-phase short-circuit current Ik3 (kA) 21.5 Number of poles and protected poles   3P3d
Courant de défaut phase-terre Id (kA) 15.9 Tripping unit  Micrologic 2.3
Circuit-breaker Q1 Overload trip Ir (A) 258  
Load current (A) 860 Short-delay trip Im / Isd (A)   2576
Type Compact Cable C7  
Reference NS1000N Length 5
Rated current (A) 1000 Maximum load current (A)   255
Number of poles and protected poles 4P4d Type of insulation   PVC
Tripping unit Micrologic 5.0 Ambient temperature (°C)   30
Overload trip Ir (A) 900 Conductor material  Copper 
Short-delay trip Im / Isd (A) 9000 Single-core or multi-core cable   Single
Tripping time tm (ms) 50 Installation method   F
Switchboard B2 Phase conductor selected csa (mm2)   1 x 95
Reference Linergy 1250 Neutral conductor selected csa (mm2)  - 
Rated current (A) 1050 PE conductor selected csa (mm2)   1 x 50
Circuit breaker Q3 Cable voltage drop ΔU (%)   0.14
Load current (A) 509 Total voltage drop ΔU (%)   0.79
Type Compact 3-phase short-circuit current Ik3 (kA)   18.0
Reference NSX630F 1-phase-to-earth fault current Id (kA)   10.0
Rated current (A) 630

   

 

Fig. G66:Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)


The same calculation using the simplified method recommended in this guide

  • Dimensioning circuit C1

The MV/LV 630 kVA transformer has a rated no-load voltage of 420 V. Circuit C1 must be suitable for a current of:

 

 


Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 433A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 240mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:

 

                                         (cable resistance: 22.5 mΩ.mm2/m)

X = 0,08 x 5 = 0,4 mΩ (cable reactance: 0.08 mΩ/m)

  • Dimensioning circuit C3

Circuit C3 supplies two 150kW loads with cos φ = 0.85, so the total load current is:

 

 

 

Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:


 

 

  • Dimensioning circuit C7

Circuit C7 supplies one 150kW load with cos φ = 0.85, so the total load current is:

 

 

 

One single-core PVC-insulated copper cable will be used for each phase. The cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance for a length of 20 metres is:

 


                                           (cable resistance: 22.5 mΩ.mm2/m)

                                           (cable reactance: 0.08 mΩ/m)

 

 

  • Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 (seeFig. G67)


Fig. G67:Example of short-circuit current evaluation


  • The protective conductor

When using the adiabatic method, the minimum c.s.a. for the protective earth conductor (PE) can be calculated by the formula given in Figure G58:

 

 

For circuit C1, I = 20.2kA and k = 143.
t is the maximum operating time of the MV protection, e.g. 0.5s
This gives:

 

 

A single 120 mm2 conductor is therefore largely sufficient, provided that it also satisfies the requirements for indirect contact protection (i.e. that its impedance is sufficiently low).
Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm2, the PE conductor minimum c.s.a. will be Sph / 2. Then, for circuit C3, the PE conductor will be 95mm2, and for circuit C7, the PE conductor will be 50mm2.

  • Protection against indirect-contact hazards

 

 

For circuit C3 of Figure G65, Figures F41 andF40, or the formula given page F25 may be used for a 3-phase 4-wire circuit.
The maximum permitted length of the circuit is given by:

(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit-breaker operates).
The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.

  • Voltage drop

The voltage drop is calculated using the data given inFigure G28, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).
The results are summarized on figure G68:



Fig. G68:Voltage drop introduced by the different cables


The total voltage drop at the end of cable C7 is then: 0.77%.


Share