R.m.s. values: Difference between revisions
From Electrical Installation Guide
(Created page with "{{Menu_Harmonic_management}} The r.m.s. value of voltage and current can be calculated as a function of the r.m.s. value of the various harmonic components: <math> I_{rms} = \s...") |
m (format) |
||
Line 3: | Line 3: | ||
The r.m.s. value of voltage and current can be calculated as a function of the r.m.s. | The r.m.s. value of voltage and current can be calculated as a function of the r.m.s. | ||
value of the various harmonic components: | value of the various harmonic components: | ||
<math> I_{rms} = \sqrt {\sum_{h=1}^{H}I_h^2 } = \sqrt {I_1^2 + I_2^2 + \dots + I_H^2 } </math> | <math> I_{rms} = \sqrt {\sum_{h=1}^{H}I_h^2 } = \sqrt {I_1^2 + I_2^2 + \dots + I_H^2 } </math> | ||
<math> V_{rms} = \sqrt {\sum_{h=1}^{H}V_h^2 } = \sqrt {V_1^2 + V_2^2 + \dots + V_H^2 } </math> | <math> V_{rms} = \sqrt {\sum_{h=1}^{H}V_h^2 } = \sqrt {V_1^2 + V_2^2 + \dots + V_H^2 } </math> |
Revision as of 07:35, 19 October 2013
The r.m.s. value of voltage and current can be calculated as a function of the r.m.s.
value of the various harmonic components:
[math]\displaystyle{ I_{rms} = \sqrt {\sum_{h=1}^{H}I_h^2 } = \sqrt {I_1^2 + I_2^2 + \dots + I_H^2 } }[/math]
[math]\displaystyle{ V_{rms} = \sqrt {\sum_{h=1}^{H}V_h^2 } = \sqrt {V_1^2 + V_2^2 + \dots + V_H^2 } }[/math]