Harmonic distortion indicators - Power factor: Difference between revisions
Migrate2019 (talk | contribs) (removed empty lines at the beginning of wiki pages) |
m (1 revision imported: Migrated pages - Remove empty lines begin pages) |
Revision as of 17:35, 20 December 2019
The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA). See Chapter Power Factor Correction.
[math]\displaystyle{ \lambda = \frac {P (kW)}{S (kVA)} }[/math]
The Power Factor must not be mixed-up with the Displacement Power Factor (cos φ), relative to fundamental signals only.
As the apparent power is calculated from the r.m.s. values, the Power Factor integrates voltage and current distortion.
When the voltage is sinusoidal or virtually sinusoidal (THDu ~ 0), it may be said that the active power is only a function of the fundamental current. Then:
[math]\displaystyle{ P \approx P_1 = U_1\ I_1\ \cos\varphi }[/math]
Consequently:
[math]\displaystyle{ \lambda = \frac {P}{S} = \frac {U_1\ I_1\ \cos\varphi}{U_1\ I_{rms} } }[/math]
As: [math]\displaystyle{ \frac {I_1}{I_{rms} } = \frac {1} {\sqrt {1+THD_i^2} } }[/math] (see Definition of harmonics),
hence: [math]\displaystyle{ \lambda \approx \frac {cos\varphi}{\sqrt{1+THD_i^2} } }[/math]
Figure M6 shows a graph of λ/cosφ as a function of THDi, for THDu ~ 0.
ru:Показатели гармоник - коэффициент мощности zh:谐波畸变指标 - 功率因数