Worked example of cable calculation: Difference between revisions

From Electrical Installation Guide
No edit summary
No edit summary
Line 23: Line 23:
{| style="width: 786px; height: 1719px" cellspacing="1" cellpadding="1" width="786" border="1"
{| style="width: 786px; height: 1719px" cellspacing="1" cellpadding="1" width="786" border="1"
|-
|-
| colspan="2" | General network characteristics   
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''General network characteristics '''
|  
|  
|    
| valign="top" align="left" | Number of poles and protected poles
|   
| 4P4d
|-
|-
| Earthing system  
| Earthing system  
| TN-S  
| TN-S  
|  
|  
|  
| Tripping unit Micrologic 2.3
|   
|   
|-
|-
Line 37: Line 37:
| No  
| No  
|  
|  
|  
| Overload trip Ir (A) 510
|  
|  
|-
|-
Line 43: Line 43:
| 400  
| 400  
|  
|  
|  
| Short-delay trip Im / Isd (A) 5100
|  
|  
|-
|-
Line 49: Line 49:
| 50  
| 50  
|  
|  
|  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''  Cable C3'''
|  
|-
|-
| Upstream fault level (MVA)  
| Upstream fault level (MVA)  
| 500  
| 500  
|  
|  
|  
| Length 20
|  
|  
|-
|-
Line 61: Line 60:
| 0.0351  
| 0.0351  
|  
|  
|  
| Maximum load current (A) 509
|  
|  
|-
|-
Line 67: Line 66:
| 0.351  
| 0.351  
|  
|  
|  
| Type of insulation PVC
|  
|  
|-
|-
| colspan="2" | Transformer T1  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Transformer T1'''
|  
|  
|  
| Ambient temperature (°C) 30
|  
|  
|-
|-
Line 78: Line 77:
| 630  
| 630  
|  
|  
|  
| Conductor material Copper
|  
|  
|-
|-
Line 84: Line 83:
| 4  
| 4  
|  
|  
|  
| Single-core or multi-core cable Single
|  
|  
|-
|-
Line 90: Line 89:
| 3.472  
| 3.472  
|  
|  
|  
| Installation method F
|  
|  
|-
|-
Line 96: Line 95:
| 10.64  
| 10.64  
|  
|  
|  
| Phase conductor selected csa (mm2) 2 x 95
|  
|  
|-
|-
Line 102: Line 101:
| 21.54  
| 21.54  
|  
|  
|  
| Neutral conductor selected csa (mm2) 2 x 95
|  
|  
|-
|-
| colspan="2" | Cable C1  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C1'''
|  
|  
|  
| PE conductor selected csa (mm2) 1 x 95
|  
|  
|-
|-
Line 113: Line 112:
| 5  
| 5  
|  
|  
|  
| Cable voltage drop ΔU (%) 0.53
|  
|  
|-
|-
Line 119: Line 118:
| 860<br>
| 860<br>
|  
|  
| &nbsp;
| Total voltage drop ΔU (%) 0.65
| &nbsp;
| &nbsp;
|-
|-
Line 125: Line 124:
| PVC  
| PVC  
|  
|  
| &nbsp;
| 3-phase short-circuit current Ik3 (kA) 19.1
| &nbsp;
| &nbsp;
|-
|-
Line 131: Line 130:
| 30  
| 30  
|  
|  
| &nbsp;
| 1-phase-to-earth fault current Id (kA) 11.5
| &nbsp;
| &nbsp;
|-
|-
Line 137: Line 136:
| Copper  
| Copper  
|  
|  
| &nbsp;
|  
| &nbsp;
| &nbsp;
|-
|-
Line 143: Line 142:
| Single  
| Single  
|  
|  
| &nbsp;  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | &nbsp; <br>'''Switchboard B6&nbsp;'''
| &nbsp;
|-
|-
| Installation method  
| Installation method  
| F  
| F  
|  
|  
| &nbsp;
| Reference Linergy 800
| &nbsp;
| &nbsp;
|-
|-
Line 155: Line 153:
| 1  
| 1  
|  
|  
| &nbsp;
| Rated current (A) 750
| &nbsp;
| &nbsp;
|-
|-
Line 161: Line 159:
| 2 x 240  
| 2 x 240  
|  
|  
| &nbsp;
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | &nbsp;<br>'''Circuit-breaker Q7'''
| &nbsp;
|-
|-
| Neutral conductor selected csa (mm2)  
| Neutral conductor selected csa (mm2)  
| 2 x 240  
| 2 x 240  
|  
|  
| &nbsp;
| Load current (A) 255
| &nbsp;
| &nbsp;
|-
|-
Line 173: Line 170:
|  
|  
|  
|  
| &nbsp;
| Type Compact
| &nbsp;
| &nbsp;
|-
|-
Line 179: Line 176:
|  
|  
|  
|  
| &nbsp;
| Reference NSX400F
| &nbsp;
| &nbsp;
|-
|-
Line 185: Line 182:
|  
|  
|  
|  
| &nbsp;
| Rated current (A) 400
| &nbsp;
| &nbsp;
|-
|-
Line 191: Line 188:
|  
|  
|  
|  
| &nbsp;
| Number of poles and protected poles 3P3d
| &nbsp;
| &nbsp;
|-
|-
| colspan="2" | '''Circuit-breaker Q1'''  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit-breaker Q1'''  
|  
|  
| &nbsp;
| Tripping unit Micrologic 2.3
| &nbsp;
| &nbsp;
|-
|-
Line 202: Line 199:
|  
|  
|  
|  
| &nbsp;
| Overload trip Ir (A) 258
| &nbsp;
| &nbsp;
|-
|-
Line 208: Line 205:
|  
|  
|  
|  
| &nbsp;
| Short-delay trip Im / Isd (A) 2576
| &nbsp;
| &nbsp;
|-
|-
Line 214: Line 211:
|  
|  
|  
|  
| &nbsp;
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Cable C7&nbsp;'''
| &nbsp;
|-
|-
| Rated current (A) 1000  
| Rated current (A) 1000  
|  
|  
|  
|  
| &nbsp;
| Length 5
| &nbsp;
| &nbsp;
|-
|-
Line 226: Line 222:
|  
|  
|  
|  
| &nbsp;
| Maximum load current (A) 255
| &nbsp;
| &nbsp;
|-
|-
Line 232: Line 228:
|  
|  
|  
|  
| &nbsp;
| Type of insulation PVC
| &nbsp;
| &nbsp;
|-
|-
Line 238: Line 234:
|  
|  
|  
|  
| &nbsp;
| Ambient temperature (°C) 30
| &nbsp;
| &nbsp;
|-
|-
Line 244: Line 240:
|  
|  
|  
|  
| &nbsp;
| Conductor material Copper
| &nbsp;
| &nbsp;
|-
|-
Line 250: Line 246:
|  
|  
|  
|  
| &nbsp;
| Single-core or multi-core cable Single
| &nbsp;
| &nbsp;
|-
|-
| colspan="2" | Switchboard B2  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Switchboard B2'''
|  
|  
| &nbsp;
| Installation method F
| &nbsp;
| &nbsp;
|-
|-
Line 261: Line 257:
|  
|  
|  
|  
| &nbsp;
| Phase conductor selected csa (mm2) 1 x 95
| &nbsp;
| &nbsp;
|-
|-
Line 267: Line 263:
|  
|  
|  
|  
| &nbsp;
| Neutral conductor selected csa (mm2) -
| &nbsp;
| &nbsp;
|-
|-
| colspan="2" | Circuit breaker Q3  
| valign="top" align="left" bgcolor="#66cc33" colspan="2" | '''Circuit breaker Q3'''
|  
|  
| &nbsp;
| PE conductor selected csa (mm2) 1 x 50
| &nbsp;
| &nbsp;
|-
|-
Line 278: Line 274:
|  
|  
|  
|  
| &nbsp;
| Cable voltage drop ΔU (%) 0.14
| &nbsp;
| &nbsp;
|-
|-
Line 284: Line 280:
|  
|  
|  
|  
| &nbsp;
| Total voltage drop ΔU (%) 0.79
| &nbsp;
| &nbsp;
|-
|-
Line 290: Line 286:
|  
|  
|  
|  
| &nbsp;
| 3-phase short-circuit current Ik3 (kA) 18.0
| &nbsp;
| &nbsp;
|-
|-
Line 296: Line 292:
|  
|  
|  
|  
|  
| 1-phase-to-earth fault current Id (kA) 10.0
| &nbsp;
| &nbsp;
|}
|}

Revision as of 11:25, 27 January 2010

Worked example of cable calculation

(see Fig. G65)
The installation is supplied through a 630 kVA transformer. The process requires a high degree of supply continuity and part of the installation can be supplied by a 250 kVA standby generator. The global earthing system is TN-S, except for the most critical loads supplied by an isolation transformer with a downstream IT configuration.
The single-line diagram is shown in Figure G65 below. The results of a computer study for the circuit from transformer T1 down to the cable C7 is reproduced on Figure G66. This study was carried out with Ecodial 3.4 software (a Schneider Electric product).
This is followed by the same calculations carried out by the simplified method described in this guide.


 

 

 

Fig. G65:Example of single-line diagram


Calculation using software Ecodial 3.3


 

General network characteristics  Number of poles and protected poles 4P4d
Earthing system TN-S Tripping unit Micrologic 2.3   
Neutral distributed No Overload trip Ir (A) 510  
Voltage (V) 400 Short-delay trip Im / Isd (A) 5100  
Frequency (Hz) 50   Cable C3
Upstream fault level (MVA) 500 Length 20  
Resistance of MV network (mΩ) 0.0351 Maximum load current (A) 509  
Reactance of MV network (mΩ) 0.351 Type of insulation PVC  
Transformer T1 Ambient temperature (°C) 30  
Rating (kVA) 630 Conductor material Copper  
Short-circuit impedance voltage (%) 4 Single-core or multi-core cable Single  
Transformer resistance RT (mΩ) 3.472 Installation method F  
Transformer reactance XT (mΩ) 10.64 Phase conductor selected csa (mm2) 2 x 95  
3-phase short-circuit current Ik3 (kA) 21.54 Neutral conductor selected csa (mm2) 2 x 95  
Cable C1 PE conductor selected csa (mm2) 1 x 95  
Length (m) 5 Cable voltage drop ΔU (%) 0.53  
Maximum load current (A) 860
Total voltage drop ΔU (%) 0.65  
Type of insulation PVC 3-phase short-circuit current Ik3 (kA) 19.1  
Ambient temperature (°C) 30 1-phase-to-earth fault current Id (kA) 11.5  
Conductor material Copper  
Single-core or multi-core cable Single  
Switchboard B6 
Installation method F Reference Linergy 800  
Number of layers 1 Rated current (A) 750  
Phase conductor selected csa (mm2) 2 x 240  
Circuit-breaker Q7
Neutral conductor selected csa (mm2) 2 x 240 Load current (A) 255  
240PE conductor selected csa (mm2) 1 x 120 Type Compact  
Voltage drop ΔU (%) 0.122 Reference NSX400F  
3-phase short-circuit current Ik3 (kA) 21.5 Rated current (A) 400  
Courant de défaut phase-terre Id (kA) 15.9 Number of poles and protected poles 3P3d  
Circuit-breaker Q1 Tripping unit Micrologic 2.3  
Load current (A) 860 Overload trip Ir (A) 258  
Type Compact Short-delay trip Im / Isd (A) 2576  
Reference NS1000N Cable C7 
Rated current (A) 1000 Length 5  
Number of poles and protected poles 4P4d Maximum load current (A) 255  
Tripping unit Micrologic 5.0 Type of insulation PVC  
Overload trip Ir (A) 900 Ambient temperature (°C) 30  
Short-delay trip Im / Isd (A) 9000 Conductor material Copper  
Tripping time tm (ms) 50 Single-core or multi-core cable Single  
Switchboard B2 Installation method F  
Reference Linergy 1250 Phase conductor selected csa (mm2) 1 x 95  
Rated current (A) 1050 Neutral conductor selected csa (mm2) -  
Circuit breaker Q3 PE conductor selected csa (mm2) 1 x 50  
Load current (A) 509 Cable voltage drop ΔU (%) 0.14  
Type Compact Total voltage drop ΔU (%) 0.79  
Reference NSX630F 3-phase short-circuit current Ik3 (kA) 18.0  
Rated current (A) 630 1-phase-to-earth fault current Id (kA) 10.0  

   

 

Fig. G66:Partial results of calculation carried out with Ecodial 3.4 software (Schneider Electric)


The same calculation using the simplified method recommended in this guide

  • Dimensioning circuit C1

The MV/LV 630 kVA transformer has a rated no-load voltage of 420 V. Circuit C1 must be suitable for a current of:

 

 


Two single-core PVC-insulated copper cables in parallel will be used for each phase.These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 433A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 240mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 5 metres, are:

 

                                         (cable resistance: 22.5 mΩ.mm2/m)

X = 0,08 x 5 = 0,4 mΩ (cable reactance: 0.08 mΩ/m)

  • Dimensioning circuit C3

Circuit C3 supplies two 150kW loads with cos φ = 0.85, so the total load current is:

 

 

 

Two single-core PVC-insulated copper cables in parallel will be used for each phase. These cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance, for the two conductors in parallel, and for a length of 20 metres, are:


 

 

  • Dimensioning circuit C7

Circuit C7 supplies one 150kW load with cos φ = 0.85, so the total load current is:

 

 

 

One single-core PVC-insulated copper cable will be used for each phase. The cables will be laid on cable trays according to method F.
Each conductor will therefore carry 255A. Figure G21a indicates that for 3 loaded conductors with PVC isolation, the required c.s.a. is 95mm².
The resistance and the inductive reactance for a length of 20 metres is:

 


                                           (cable resistance: 22.5 mΩ.mm2/m)

                                           (cable reactance: 0.08 mΩ/m)

 

 

  • Calculation of short-circuit currents for the selection of circuit-breakers Q1, Q3, Q7 (seeFig. G67)


Fig. G67:Example of short-circuit current evaluation


  • The protective conductor

When using the adiabatic method, the minimum c.s.a. for the protective earth conductor (PE) can be calculated by the formula given in Figure G58:

 

 

For circuit C1, I = 20.2kA and k = 143.
t is the maximum operating time of the MV protection, e.g. 0.5s
This gives:

 

 

A single 120 mm2 conductor is therefore largely sufficient, provided that it also satisfies the requirements for indirect contact protection (i.e. that its impedance is sufficiently low).
Generally, for circuits with phase conductor c.s.a. Sph ≥ 50 mm2, the PE conductor minimum c.s.a. will be Sph / 2. Then, for circuit C3, the PE conductor will be 95mm2, and for circuit C7, the PE conductor will be 50mm2.

  • Protection against indirect-contact hazards

 

 

For circuit C3 of Figure G65, Figures F41 andF40, or the formula given page F25 may be used for a 3-phase 4-wire circuit.
The maximum permitted length of the circuit is given by:

(The value in the denominator 630 x 11 is the maximum current level at which the instantaneous short-circuit magnetic trip of the 630 A circuit-breaker operates).
The length of 20 metres is therefore fully protected by “instantaneous” over-current devices.

  • Voltage drop

The voltage drop is calculated using the data given inFigure G28, for balanced three-phase circuits, motor power normal service (cos φ = 0.8).
The results are summarized on figure G68:



Fig. G68:Voltage drop introduced by the different cables


The total voltage drop at the end of cable C7 is then: 0.77%.


Share