Other lamp technologies - constraints and recommendations
The current actually drawn by luminaires
The risk
This characteristic is the first one that should be defined when creating an installation, otherwise it is highly probable that overload protection devices will trip and users may often find themselves in the dark.
It is evident that their determination should take into account the consumption of all components, especially for fluorescent lighting installations, since the power consumed by the ballasts has to be added to that of the tubes and bulbs.
The solution
For incandescent lighting, it should be remembered that the line voltage can be more than 10% of its nominal value, which would then cause an increase in the current drawn.
For fluorescent lighting, unless otherwise specified, the power of the magnetic ballasts can be assessed at 25% of that of the bulbs. For electronic ballasts, this power is lower, in the order of 5 to 10%.
The thresholds for the overcurrent protection devices should therefore be calculated as a function of the total power and the power factor, calculated for each circuit.
Overcurrents at switch-on
The risk
The devices used for control and protection of lighting circuits are those such as relays, triac, remote-control switches, contactors or circuit-breakers.
The main constraint applied to these devices is the current peak on energization.
This current peak depends on the technology of the lamps used, but also on the installation characteristics (supply transformer power, length of cables, number of lamps) and the moment of energization in the line voltage period. A high current peak, however fleeting, can cause the contacts on an electromechanical control device to weld together or the destruction of a solid state device with semi-conductors.
Two solutions
Because of the inrush current, the majority of ordinary relays are incompatible with lighting device power supply. The following recommendations are therefore usually made:
- Limit the number of lamps to be connected to a single device so that their total power is less than the maximum permissible power for the device
- Check with the manufacturers what operating limits they suggest for the devices. This precaution is particularly important when replacing incandescent lamps with compact fluorescent lamps
By way of example, the table in Figure N49 indicates the maximum number of compensated fluorescent tubes that can be controlled by different devices with 16 A rating. Note that the number of controlled tubes is well below the number corresponding to the maximum power for the devices.
Tube unit power requirement (W) |
Number of tubes corresponding to the power 16 A x 230 V |
Maximum number of tubes that can be controlled by | ||
Contactors GC16 A CT16 A |
Remote control switches TL16 A |
'Circuit- breakers C60-16 'A | ||
18 | 204 | 15 | 50 | 112 |
36 | 102 | 15 | 25 | 56 |
58 | 63 | 10 | 16 | 34 |
Fig. N49: The number of controlled tubes is well below the number corresponding to the maximum power for the devices
But a technique exists to limit the current peak on energization of circuits with capacitive behavior (magnetic ballasts with parallel compensation and electronic ballasts). It consists of ensuring that activation occurs at the moment when the line voltage passes through zero. Only solid state switches with semi-conductors offer this possibility (see Fig. N50a). This technique has proved to be particularly useful when designing new lighting circuits.
More recently, hybrid technology devices have been developed that combine a solid state switch (activation on voltage passage through zero) and an electromechanical contactor short-circuiting the solid state switch (reduction of losses in the semi-conductors) (see Fig. N50b).
a b c
Fig. N50: “Standard” CT+ contactor [a], CT+ contactor with manual override, pushbutton for selection of operating mode and indicator lamp showing the active operating mode [b], and TL + remote-control switch [c] (Merlin Gerin brand)
Choice of relay rating according to lamp type
Modular contactors and impulse relays do not use the same technologies. Their rating is determined according to different standards. For example, for a given rating, an impulse relay is more efficient than a modular contactor for the control of light fittings with a strong inrush current, or with a low power factor (non-compensated inductive circuit). |
Figure 51 shows the maximum number of light fittings for each relay, according to the type, power and configuration of a given lamp. As an indication, the total acceptable power is also mentioned.
- These values are given for a 230 V circuit with 2 active conductors (single-phase phase/neutral or two-phase phase/phase). For 110 V circuits, divide the values in the table by 2.
- To obtain the equivalent values for the whole of a 230 V three-phase circuit, multiply the number of lamps and the total acceptable power:
- by [math]\displaystyle{ \sqrt 3 }[/math] (1.73) for circuits without neutral;
- by 3 for circuits with neutral.
Note: The power ratings of the lamps most commonly used are shown in bold.
Type of lamp | Unit power and capacitance of power factor correction capacitor | Maximum number of light fittings for a single-phase circuit and maximum power output per circuit | ||||||||||||
TL impulse relay | CT contactor | |||||||||||||
16A | 32A | 16A | 25A | 40A | 63A | |||||||||
Basic incandescent lamps LV halogen lamps Replacement mercury vapour lamps (without ballast) | ||||||||||||||
|
40W | 40 | 1500 W to 1600 W |
106 | 4000 W to 4200 W |
38 | 1550 W to 2000 W |
57 | 2300 W to 2850 W |
115 | 4600 W to 5250 W |
172 | 6900 W to 7500 W | |
60W | 25 | 66 | 30 | 45 | 85 | 125 | ||||||||
75W | 20 | 53 | 25 | 38 | 70 | 100 | ||||||||
100W | 16 | 42 | 19 | 28 | 50 | 73 | ||||||||
150W | 10 | 28 | 12 | 18 | 35 | 50 | ||||||||
200W | 8 | 21 | 10 | 14 | 26 | 37 | ||||||||
300W | 5 | 1500 W | 13 | 4000 W | 7 | 2100 W | 10 | 3000 W | 18 | 5500 W to 6000 W |
25 | 7500 W to 8000 W | ||
500W | 3 | 8 | 4 | 6 | 10 | 15 | ||||||||
1000W | 1 | 4 | 2 | 3 | 6 | 8 | ||||||||
1500W | 1 | 2 | 1 | 2 | 4 | 5 | ||||||||
ELV 12 or 24 V halogen lamps | ||||||||||||||
With ferromagnetic transformer | 20W | 70 | 1350 W to 1450 W |
180 | 3600 W to 3750 W |
15 | 300 W to 600 W |
23 | 450 W to 900 W |
42 | 850 W to 1950 W |
63 | 1250 W to 2850 W | |
50W | 28 | 74 | 10 | 15 | 27 | 42 | ||||||||
75W | 19 | 50 | 8 | 12 | 23 | 35 | ||||||||
100W | 14 | 37 | 6 | 8 | 18 | 27 | ||||||||
With electronic transformer | 20W | 60 | 1200 W to 1400 W |
160 | 3200 W to 3350 W |
62 | 1250 W to 1600 W |
90 | 1850 W to 2250 W |
182 | 3650 W to 4200 W |
275 | 5500 W to 6000 W | |
50W | 25 | 65 | 25 | 39 | 76 | 114 | ||||||||
75W | 18 | 44 | 20 | 28 | 53 | 78 | ||||||||
100W | 14 | 33 | 16 | 22 | 42 | 60 | ||||||||
Fluorescent tubes with starter and ferromagnetic ballast | ||||||||||||||
1 tube without compensation (1) |
15W | 83 | 1250 W to 1300 W |
213 | 3200 W to 3350 W |
22 | 330 W to 850 W |
30 | 450 W to 1200 W |
70 | 1050 W to 2400 W |
100 | 1500 W to 3850 W | |
18W | 70 | 186 | 22 | 30 | 70 | 100 | ||||||||
20W | 62 | 160 | 22 | 30 | 70 | 100 | ||||||||
36W | 35 | 93 | 20 | 28 | 60 | 90 | ||||||||
40W | 31 | 81 | 20 | 28 | 60 | 90 | ||||||||
58W | 21 | 55 | 13 | 17 | 35 | 56 | ||||||||
65W | 20 | 50 | 13 | 17 | 35 | 56 | ||||||||
80W | 16 | 41 | 10 | 15 | 30 | 48 | ||||||||
115W | 11 | 29 | 7 | 10 | 20 | 32 | ||||||||
1 tube with parallel compensation (2) |
15W | 5 µF | 60 | 900 W | 160 | 2400 W | 15 | 200 W to 800 W |
20 | 300 W to 1200 W |
40 | 600 W to 2400 W |
60 | 900 W to 3500 W |
18W | 5 µF | 50 | 133 | 15 | 20 | 40 | 60 | |||||||
20W | 5 µF | 45 | 120 | 15 | 20 | 40 | 60 | |||||||
36W | 5 µF | 25 | 66 | 15 | 20 | 40 | 60 | |||||||
40W | 5 µF | 22 | 60 | 15 | 20 | 40 | 60 | |||||||
58W | 7 µF | 16 | 42 | 10 | 15 | 30 | 43 | |||||||
65W | 7 µF | 13 | 37 | 10 | 15 | 30 | 43 | |||||||
80W | 7 µF | 11 | 30 | 10 | 15 | 30 | 43 | |||||||
115W | 16µF | 7 | 20 | 5 | 7 | 14 | 20 | |||||||
2 or 4 tubes with series compensation |
2 x 18W | 56 | 2000 W | 148 | 5300 W | 30 | 1100 W to 1500 W |
46 | 1650 W to 2400 W |
80 | 2900 W to 3800 W |
123 | 4450 W to 5900 W | |
4 x 18W | 28 | 74 | 16 | 24 | 44 | 68 | ||||||||
2 x 36 W | 28 | 74 | 16 | 24 | 44 | 68 | ||||||||
2 x 58 W | 17 | 45 | 10 | 16 | 27 | 42 | ||||||||
2 x 65 W | 15 | 40 | 10 | 16 | 27 | 42 | ||||||||
2 x 80 W | 12 | 33 | 9 | 13 | 22 | 34 | ||||||||
2 x 115 W | 8 | 23 | 6 | 10 | 16 | 25 | ||||||||
Fluorescent tubes with electronic ballast | ||||||||||||||
1 or 2 tubes | 18W | 80 | 1450 W to 1550 W |
212 | 3800 W to 4000 W |
74 | 1300 W to 1400 W |
111 | 2000 W to 2200 W |
222 | 4000 W to 4400 W |
333 | 6000 W to 6600 W | |
36W | 40 | 106 | 38 | 58 | 117 | 176 | ||||||||
58W | 26 | 69 | 25 | 37 | 74 | 111 | ||||||||
2 x18 W | 40 | 106 | 36 | 55 | 111 | 166 | ||||||||
2 x36 W | 20 | 53 | 20 | 30 | 60 | 90 | ||||||||
2 x 58 W | 13 | 34 | 12 | 19 | 38 | 57 | ||||||||
Compact fluorescent lamps | ||||||||||||||
With external electronic ballast | 5 W | 240 | 1200 W to 1450 W |
630 | 3150 W to 3800 W |
210 | 1050 W to 1300 W |
330 | 1650 W to 2000 W |
670 | 3350 W to 4000 W |
not tested | ||
7 W | 171 | 457 | 150 | 222 | 478 | |||||||||
9 W | 138 | 366 | 122 | 194 | 383 | |||||||||
11 W | 180 | 318 | 104 | 163 | 327 | |||||||||
18 W | 77 | 202 | 66 | 105 | 216 | |||||||||
26 W | 55 | 146 | 50 | 76 | 153 | |||||||||
With integral electronic ballast (replacement for incandescent lamps) |
5 W | 170 | 850 W to 1050 W |
390 | 1950 W to 2400 W |
160 | 800 W to 900 W |
230 | 1150 W to 1300 W |
470 | 2350 W to 2600 W |
710 | 3550 W to 3950 W | |
7 W | 121 | 285 | 114 | 164 | 335 | 514 | ||||||||
9 W | 100 | 233 | 94 | 133 | 266 | 411 | ||||||||
11 W | 86 | 200 | 78 | 109 | 222 | 340 | ||||||||
18 W | 55 | 127 | 48 | 69 | 138 | 213 | ||||||||
26 W | 40 | 92 | 34 | 50 | 100 | 151 | ||||||||
High-pressure mercury vapour lamps with ferromagnetic ballast without ignitor Replacement high-pressure sodium vapour lamps with ferromagnetic ballast with integral ignitor (3) | ||||||||||||||
Without compensation (1) | 50 W | not tested, infrequent use | 15 | 750 W to 1000 W |
20 | 1000 W to 1600 W |
34 | 1700 W to 2800 W |
53 | 2650 W to 4200 W | ||||
80 W | 10 | 15 | 27 | 40 | ||||||||||
125/110W | 8 | 10 | 20 | 28 | ||||||||||
250 / 220 W (3) |
4 | 6 | 10 | 15 | ||||||||||
400 / 350 W (3) |
2 | 4 | 6 | 10 | ||||||||||
700 W | 1 | 2 | 4 | 6 | ||||||||||
With parallel compensation (2) | 50 W | 7 µF | 10 | 500 W to 1400 W |
15 | 750 W to 1600 W |
28 | 1400 W to 3500 W |
43 | 2150 W to 5000 W | ||||
80 W | 8 µF | 9 | 13 | 25 | 38 | |||||||||
125/ 110W |
10 µF | 9 | 10 | 20 | 30 | |||||||||
250 / 220 W (3) |
18 µF | 4 | 6 | 11 | 17 | |||||||||
400 / 350 W (3) | 25 µF | 3 | 4 | 8 | 12 | |||||||||
700 W | 40 µF | 2 | 2 | 5 | 7 | |||||||||
1000 W | 60 µF | 0 | 1 | 3 | 5 | |||||||||
Low-pressure sodium vapour lamps with ferromagnetic ballast with external ignitor | ||||||||||||||
Without compensation (1) | 35 W | not tested, infrequent use | 5 | 270 W to 360 W |
9 | 320 W to 720 W |
14 | 500 W to 1100 W |
24 | 850 W to 1800 W | ||||
55 W | 5 | 9 | 14 | 24 | ||||||||||
90 W | 3 | 6 | 9 | 19 | ||||||||||
135 W | 2 | 4 | 6 | 10 | ||||||||||
180 W | 2 | 4 | 6 | 10 | ||||||||||
With parallel compensation (2) | 35 W | 20 µF | 38 | 1350 W | 102 | 3600 W | 3 | 100 W to 180 W |
5 | 175 W to 360 W |
10 | 350 W to 720 W |
15 | 550 W to 1100 W |
55 W | 20 µF | 24 | 63 | 3 | 5 | 10 | 15 | |||||||
90 W | 26 µF | 15 | 40 | 2 | 4 | 8 | 11 | |||||||
135 W | 40 µF | 10 | 26 | 1 | 2 | 5 | 7 | |||||||
180 W | 45 µF | 7 | 18 | 1 | 2 | 4 | 6 | |||||||
High-pressure sodium vapour lamps Metal-iodide lamps | ||||||||||||||
With ferromagnetic ballast with external ignitor, without compensation (1) | 35 W | not tested, infrequent use | 16 | 600 W | 24 | 850 W to 1200 W |
42 | 1450 W to 2000 W |
64 | 2250 W to 3200 W | ||||
70 W | 8 | 12 | 20 | 32 | ||||||||||
150 W | 4 | 7 | 13 | 18 | ||||||||||
250 W | 2 | 4 | 8 | 11 | ||||||||||
400 W | 1 | 3 | 5 | 8 | ||||||||||
1000 W | 0 | 1 | 2 | 3 | ||||||||||
With ferromagnetic ballast with external ignitor and parallel compensation (2) | 35 W | 6 µF | 34 | 1200 W to 1350 W |
88 | 3100 W to 3400 W |
12 | 450 W to 1000 W |
18 | 650 W to 2000 W |
31 | 1100 W to 4000 W |
50 |
1750 W
|
70 W | 12 µF | 17 | 45 | 6 | 9 | 16 | 25 | |||||||
150 W | 20 µF | 8 | 22 | 4 | 6 | 10 | 15 | |||||||
250 W | 32 µF | 5 | 13 | 3 | 4 | 7 | 10 | |||||||
400 W | 45 µF | 3 | 8 | 2 | 3 | 5 | 7 | |||||||
1000 W | 60 µF | 1 | 3 | 1 | 2 | 3 | 5 | |||||||
2000 W | 85 µF | 0 | 1 | 0 | 1 | 2 | 3 | |||||||
With electronic ballast | 35 W | 38 | 1350 W to 2200 W |
87 | 3100 W to 5000 W |
24 | 850 W to 1350 W |
38 | 1350 W to 2200 W |
68 | 2400 W to 4000 W |
102 | 3600 W to 6000 W | |
70 W | 29 | 77 | 18 | 29 | 51 | 76 | ||||||||
150 W | 14 | 33 | 9 | 14 | 26 | 40 |
(1) Circuits with non-compensated ferromagnetic ballasts consume twice as much current for a given lamp power output. This explains
the small number of lamps in this configuration.
(2) The total capacitance of the power factor correction capacitors in parallel in a circuit limits the number of lamps that can be controlled
by a contactor. The total downstream capacitance of a modular contactor of rating 16, 25, 40 or 63 A should not exceed 75, 100, 200
or 300 µF respectively. Allow for these limits to calculate the maximum acceptable number of lamps if the capacitance values are
different from those in the table.
(3) High-pressure mercury vapour lamps without ignitor, of power 125, 250 and 400 W, are gradually being replaced by high-pressure
sodium vapour lamps with integral ignitor, and respective power of 110, 220 and 350 W.
Fig. N51: Maximum number of light fittings for each relay, according to the type, power and configuration of a given lamp (Concluded)
Protection of lamp circuits: Maximum number of lamps and MCB rating versus lamp type, unit power and MCB tripping curve
During start up of discharge lamps (with their ballast), the inrush current drawn by each lamp may be in the order of:
- 25 x circuit start current for the first 3 ms
- 7 x circuit start current for the following 2 s
For fluorescent lamps with High Frequency Electronic control ballast, the protective device ratings must cope with 25 x inrush for 250 to 350 µs.
However due to the circuit resistance the total inrush current seen by the MCB is lower than the summation of all individual lamp inrush current if directly connected to the MCB.
The tables below (see Fig. N52 to NXX) take into account:
- Circuits cables have a length of 20 meters from distribution board to the first lamp and 7 meters between each additional fittings.
- MCB rating is given to protect the lamp circuit in accordance with the cable cross section, and without unwanted tripping upon lamp starting.
- MCB tripping curve (C = instantaneous trip setting 5 to 10 In, D = instantaneous trip setting 10 to 14 In).
Lamp power (W) |
Number of lamps per circuit | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
MCB rating C & D tripping curve | |||||||||||||||||||||
14/18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
14x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
14x3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | |
14x4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | |
18x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
18x4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
21/24 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
21/24 x 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
28 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
28x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | |
35/36/39 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
35/36 x 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | |
38/39 x 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
40/42 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
40/42 x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | |
49/50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
49/50 x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | |
54/55 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | |
54/55 x2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | |
60 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
Fig. N52: Fluorescent tubes with electronic ballast - Vac = 230 V
Lamp power (W) |
Number of lamps per circuit | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
MCB rating C & D tripping curve | |||||||||||||||||||||
6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
9 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
11 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
13 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
14 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
15 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
16 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
17 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
20 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
21 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
23 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
25 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 |
Fig. N53: Compact fluorescent lamps - Vac = 230 V
Lamp power (W) |
Number of lamps per circuit | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
MCB rating C tripping curve | |||||||||||||||||||||
50 | 6 | 6 | 6 |
6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | |
80 | 6 | 6 | 6 |
6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | |
125 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | |
250 | 6 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 | |
400 | 6 | 16 | 20 | 25 | 25 | 32 | 32 | 32 | 32 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | |
1000 | 16 | 32 | 40 | 50 | 50 | 50 | 50 | 50 | 63 | - | - | - | - | - | - | - | - | - | - | - | |
MCB rating D tripping curve | |||||||||||||||||||||
50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | |
80 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | |
125 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | |
250 | 6 | 6 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 | |
400 | 6 | 10 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | |
1000 | 10 | 20 | 25 | 32 | 40 | 40 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - |
Fig. N54: High pressure mercury vapour (with ferromagnetic ballast and PF correction) - Vac = 230 V
Lamp power (W) |
Number of lamps per circuit | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
MCB rating C tripping curve | ||||||||||||||||||||
Ferromagnetic ballast | ||||||||||||||||||||
18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
26 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
35/36 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
55 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
91 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 |
131 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 |
135 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 |
180 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 25 |
Electronic ballast | ||||||||||||||||||||
36 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
55 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
66 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 |
91 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 |
MCB rating D tripping curve | ||||||||||||||||||||
Ferromagnetic ballast | ||||||||||||||||||||
18 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
26 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
35/36 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
55 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 |
91 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 |
131 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 |
135 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 |
180 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 25 |
Electronic ballast | ||||||||||||||||||||
36 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
55 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
66 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 |
91 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 |
Fig. N55: 'Low pressure sodium (with PF correction) - Vac = 230 V
Lamp power (W) | Number of lamps per circuit | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
MCB rating C tripping curve | ||||||||||||||||||||
Ferromagnetic ballast | ||||||||||||||||||||
50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 |
100 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
150 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 6 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 25 | 25 |
250 | 6 | 10 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 |
400 | 10 | 16 | 20 | 25 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 |
1000 | 16 | 32 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - |
Electronic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
100 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 |
MCB rating D tripping curve | ||||||||||||||||||||
Ferromagnetic ballast | ||||||||||||||||||||
50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 |
100 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
150 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 25 | 25 |
250 | 6 | 6 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 |
400 | 6 | 10 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 |
1000 | 10 | 20 | 32 | 32 | 40 | 40 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - |
Electronic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
50 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
100 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 |
Fig. N56: High pressure sodium (with PF correction) - Vac = 230 V
Lamp power (W) | Number of lamps per circuit | |||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
MCB rating C tripping curve | ||||||||||||||||||||
Ferromagnetic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 |
150 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 25 | 25 |
250 | 6 | 10 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 |
400 | 6 | 16 | 20 | 25 | 25 | 32 | 32 | 32 | 32 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 |
1000 | 16 | 32 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 | 63 |
1800/2000 | 25 | 50 | 63 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Electronic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
150 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 |
MCB rating D tripping curve | ||||||||||||||||||||
Electronic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | 16 | 16 |
150 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 25 | 25 |
250 | 6 | 6 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 32 | 32 | 40 | 40 |
400 | 6 | 10 | 16 | 16 | 20 | 20 | 25 | 25 | 25 | 32 | 32 | 40 | 40 | 40 | 50 | 50 | 50 | 50 | 63 | 63 |
1000 | 16 | 20 | 32 | 32 | 40 | 50 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - |
1800 | 16 | 32 | 40 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2000 | 20 | 32 | 40 | 50 | 63 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Electronic ballast | ||||||||||||||||||||
35 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
70 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
150 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 20 |
Fig. N57: <Metal halide (with PF correction) - Vac = 230 V
Lamp power (W) |
Number of lamps per circuit | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
MCB rating C tripping curve | |||||||||||||||||||||
1800 | 16 | 32 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - | |
2000 | 16 | 32 | 40 | 50 | 50 | 50 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - | |
MCB rating D tripping curve | |||||||||||||||||||||
1800 | 16 | 20 | 32 | 32 | 32 | 32 | 50 | 63 | 63 | - | - | - | - | - | - | - | - | - | - | - | |
2000 | 16 | 25 | 32 | 32 | 32 | 32 | 50 | 63 | - | - | - | - | - | - | - | - | - | - | - | - |
Fig. N58: <Metal halide (with ferromagnetic ballast and PF correction) - Vac = 400 V
Overload of the neutral conductor
The risk
In an installation including, for example, numerous fluorescent tubes with electronic ballasts supplied between phases and neutral, a high percentage of 3rd harmonic current can cause an overload of the neutral conductor. Figure N59 below gives an overview of typical H3 level created by lighting.
Lamp type | Typical power | Setting mode | Typical H3 level |
Incandescend lamp with dimmer | 100 W | Light dimmer | 5 to 45 % |
ELV halogen lamp | 25 W | Electronic ELV transformer | 5 % |
Fluorescent tube | 100 W | Magnetic ballast | 10 % |
< 25 W | Electronic ballast | 85 % | |
> 25 W | + PFC | 30 % | |
Discharge lamp | 100 W | Magnetic ballast | 10 % |
Electrical ballast | 30 % |
Fig. N59: Overview of typical H3 level created by lighting
The solution
Firstly, the use of a neutral conductor with a small cross-section (half) should be prohibited, as requested by Installation standard IEC 60364, section 523–5–3.
As far as overcurrent protection devices are concerned, it is necessary to provide
4-pole circuit-breakers with protected neutral (except with the TN-C system for which the PEN, a combined neutral and protection conductor, should not be cut).
This type of device can also be used for the breaking of all poles necessary to supply luminaires at the phase-to-phase voltage in the event of a fault.
A breaking device should therefore interrupt the phase and Neutral circuit simultaneously.
Leakage currents to earth
The risk
At switch-on, the earth capacitances of the electronic ballasts are responsible for residual current peaks that are likely to cause unintentional tripping of protection devices.
Two solutions
The use of Residual Current Devices providing immunity against this type of impulse current is recommended, even essential, when equipping an existing installation
(see Fig.N60).
Fig. N60: s.i. residual current devices with immunity against impulse currents (Merlin Gerin brand)
For a new installation, it is sensible to provide solid state or hybrid control devices (contactors and remote-control switches) that reduce these impulse currents (activation on voltage passage through zero).
Overvoltages
The risk
As illustrated in earlier sections, switching on a lighting circuit causes a transient state which is manifested by a significant overcurrent. This overcurrent is accompanied by a strong voltage fluctuation applied to the load terminals connected to the same circuit.
These voltage fluctuations can be detrimental to correct operation of sensitive loads (micro-computers, temperature controllers, etc.)
The Solution
It is advisable to separate the power supply for these sensitive loads from the lighting circuit power supply.
Sensitivity of lighting devices to line voltage disturbances
Short interruptions
- The risk
Discharge lamps require a relighting time of a few minutes after their power supply has been switched off.
- The solution
Partial lighting with instantaneous relighting (incandescent lamps or fluorescent tubes, or “hot restrike” discharge lamps) should be provided if safety requirements so dictate. Its power supply circuit is, depending on current regulations, usually distinct from the main lighting circuit.
Voltage fluctuations
- The risk
The majority of lighting devices (with the exception of lamps supplied by electronic ballasts) are sensitive to rapid fluctuations in the supply voltage. These fluctuations cause a flicker phenomenon which is unpleasant for users and may even cause significant problems. These problems depend on both the frequency of variations and their magnitude.
Standard IEC 61000-2-2 (“compatibility levels for low-frequency conducted disturbances”) specifies the maximum permissible magnitude of voltage variations as a function of the number of variations per second or per minute.
These voltage fluctuations are caused mainly by high-power fluctuating loads (arc furnaces, welding machines, starting motors).
- The solution
Special methods can be used to reduce voltage fluctuations. Nonetheless, it is advisable, wherever possible, to supply lighting circuits via a separate line supply.
The use of electronic ballasts is recommended for demanding applications (hospitals, clean rooms, inspection rooms, computer rooms, etc).
Developments in control and protection equipment
The use of light dimmers is more and more common. The constraints on ignition are therefore reduced and derating of control and protection equipment is less important.
New protection devices adapted to the constraints on lighting circuits are being introduced, for example Merlin Gerin brand circuit-breakers and modular residual current circuit-breakers with special immunity, such as s.i. type ID switches and Vigi circuit-breakers. As control and protection equipment evolves, some now offer remote control, 24-hour management, lighting control, reduced consumption, etc.
ru:Ограничения, связанные с осветительными устройствами, и рекомендации