F8 - Tab1150
Uo (V)
|
50 < Uo ≤ 120
|
120 < Uo ≤ 230
|
230 < Uo ≤ 400
|
Uo > 400
|
System
|
TN or IT
|
0.8
|
0.4
|
0.2
|
0.1
|
TT
|
0.3
|
0.2
|
0.07
|
0.04
|
Fig. F8 – Maximum safe duration of the assumed values of AC touch voltage (in seconds)
F10 - Tab1151
Uo[a] (V)
|
T (s)
|
50 <Uo ≤ 120
|
0.3
|
120 < Uo ≤ 230
|
0.2
|
230 < Uo ≤ 400
|
0.07
|
Uo > 400
|
0.04
|
[a] Uo is the nominal phase to earth voltage
Fig. F10 – Maximum disconnecting time for AC final circuits not exceeding 32 A
F11 - Tab1152
X IΔn
|
|
1
|
2
|
5
|
> 5
|
Domestic
|
Instantaneous
|
0.3
|
0.15
|
0.04
|
0.04
|
Type S
|
0.5
|
0.2
|
0.15
|
0.15
|
Industrial
|
Instantaneous
|
0.3
|
0.15
|
0.04
|
0.04
|
Time-delay : 0.06 s
|
0.5
|
0.2
|
0.15
|
0.15
|
Time-delay (other)
|
According to manufacturer
|
Fig. F11 – Maximum operating time of RCD’s (in seconds)
F13 - Tab1154
Uo[a] (V)
|
T (s)
|
50 < Uo ≤ 120
|
0.8
|
120 < Uo ≤ 230
|
0.4
|
230 < Uo ≤ 400
|
0.2
|
Uo > 400
|
0.1
|
[a] Uo is the nominal phase to earth voltage
Fig. F13 – Maximum disconnecting time for AC final circuits not exceeding 32 A
F19 - Tab1154
Leakage capacitance (µF)
|
First fault current (A)
|
1
|
0.07
|
5
|
0.36
|
30
|
2.17
|
Note: 1 µF is the 1 km typical leakage capacitance for 4-conductor cable.
Fig. F19 – Correspondence between the earth leakage capacitance and the first fault current
- Tab1155
Type / installation level
|
Main-distribution
|
Sub-distribution
|
Comments
|
Source Ground Return (SGR)
|
Possible
|
|
Used
|
Residual Sensing (RS) (SGR)
|
Possible
|
Recommended or required
|
Often used
|
Zero Sequence (SGR)
|
Possible
|
Recommended or required
|
Rarely used
|
F28 - Tab1156
IΔn
|
Maximum resistance of the earth electrode
|
|
(50 V)
|
(25 V)
|
3 A
|
16 Ω
|
8 Ω
|
1 A
|
50 Ω
|
25 Ω
|
500 mA
|
100 Ω
|
50 Ω
|
300 mA
|
166 Ω
|
83 Ω
|
30 mA
|
1666 Ω
|
833 Ω
|
Fig. F28 – The upper limit of resistance for an installation earthing electrode which must not be exceeded, for given sensitivity levels of RCDs at UL voltage limits of 50 V and 25 V
- Tab1157
Core size (mm2)
|
Value of resistance
|
S = 150 mm2
|
R+15%
|
S = 185 mm2
|
R+20%
|
S = 240 mm2
|
R+25%
|
F40 - Tab1158
Circuit
|
Conductor material
|
m = Sph/SPE (or PEN)
|
m = 1
|
m = 2
|
m = 3
|
m = 4
|
3P + N or P + N
|
Copper
|
1
|
0.67
|
0.50
|
0.40
|
Aluminium
|
0.62
|
0.42
|
0.31
|
0.25
|
Fig. F40 – Correction factor to apply to the lengths given in tables F41 to F44 for TN systems
F41 - Tab1159
Nominal cross- sectional area of conductors
|
Instantaneous or short-time-delayed tripping current Im (amperes)
|
mm2
|
50
|
63
|
80
|
100
|
125
|
160
|
200
|
250
|
320
|
400
|
500
|
560
|
630
|
700
|
800
|
875
|
1000
|
1120
|
1250
|
1600
|
2000
|
2500
|
3200
|
4000
|
5000
|
6300
|
8000
|
10000
|
12500
|
1.5
|
100
|
79
|
63
|
50
|
40
|
31
|
25
|
20
|
16
|
13
|
10
|
9
|
8
|
7
|
6
|
6
|
5
|
4
|
4
|
|
|
|
|
|
|
|
|
|
|
2.5
|
167
|
133
|
104
|
83
|
67
|
52
|
42
|
33
|
26
|
21
|
17
|
15
|
13
|
12
|
10
|
10
|
8
|
7
|
7
|
5
|
4
|
|
|
|
|
|
|
|
|
4
|
267
|
212
|
167
|
133
|
107
|
83
|
67
|
53
|
42
|
33
|
27
|
24
|
21
|
19
|
17
|
15
|
13
|
12
|
11
|
8
|
7
|
5
|
4
|
|
|
|
|
|
|
6
|
400
|
317
|
250
|
200
|
160
|
125
|
100
|
80
|
63
|
50
|
40
|
36
|
32
|
29
|
25
|
23
|
20
|
18
|
16
|
13
|
10
|
8
|
6
|
5
|
4
|
|
|
|
|
10
|
|
|
417
|
333
|
267
|
208
|
167
|
133
|
104
|
83
|
67
|
60
|
53
|
48
|
42
|
38
|
33
|
30
|
27
|
21
|
17
|
13
|
10
|
8
|
7
|
5
|
4
|
|
|
16
|
|
|
|
|
427
|
333
|
267
|
213
|
167
|
133
|
107
|
95
|
85
|
76
|
67
|
61
|
53
|
48
|
43
|
33
|
27
|
21
|
17
|
13
|
11
|
8
|
7
|
5
|
4
|
25
|
|
|
|
|
|
|
417
|
333
|
260
|
208
|
167
|
149
|
132
|
119
|
104
|
95
|
83
|
74
|
67
|
52
|
42
|
33
|
26
|
21
|
17
|
13
|
10
|
8
|
7
|
35
|
|
|
|
|
|
|
|
467
|
365
|
292
|
233
|
208
|
185
|
167
|
146
|
133
|
117
|
104
|
93
|
73
|
58
|
47
|
36
|
29
|
23
|
19
|
15
|
12
|
9
|
50
|
|
|
|
|
|
|
|
|
495
|
396
|
317
|
283
|
251
|
226
|
198
|
181
|
158
|
141
|
127
|
99
|
79
|
63
|
49
|
40
|
32
|
25
|
20
|
16
|
13
|
70
|
|
|
|
|
|
|
|
|
|
|
|
417
|
370
|
333
|
292
|
267
|
233
|
208
|
187
|
146
|
117
|
93
|
73
|
58
|
47
|
37
|
29
|
23
|
19
|
95
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452
|
396
|
362
|
317
|
283
|
263
|
198
|
158
|
127
|
99
|
79
|
63
|
50
|
40
|
32
|
25
|
120
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457
|
400
|
357
|
320
|
250
|
200
|
160
|
125
|
100
|
80
|
63
|
50
|
40
|
32
|
150
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435
|
388
|
348
|
272
|
217
|
174
|
136
|
109
|
87
|
69
|
54
|
43
|
35
|
185
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459
|
411
|
321
|
257
|
206
|
161
|
128
|
103
|
82
|
64
|
51
|
41
|
240
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400
|
320
|
256
|
200
|
160
|
128
|
102
|
80
|
64
|
51
|
Fig. F41 – Maximum circuit lengths (in metres) for different sizes of copper conductor and instantaneous-tripping-current settings for general-purpose circuit-breakers in 230/400 V TN system with m = 1
F42 - Tab1160
Sph
|
Rated current (A)
|
mm2
|
1
|
2
|
3
|
4
|
6
|
10
|
16
|
20
|
25
|
32
|
40
|
50
|
63
|
80
|
100
|
125
|
1.5
|
1200
|
600
|
400
|
300
|
200
|
120
|
75
|
60
|
48
|
37
|
30
|
24
|
19
|
15
|
12
|
10
|
2.5
|
|
1000
|
666
|
500
|
333
|
200
|
125
|
100
|
80
|
62
|
50
|
40
|
32
|
25
|
20
|
16
|
4
|
|
|
1066
|
800
|
533
|
320
|
200
|
160
|
128
|
100
|
80
|
64
|
51
|
40
|
32
|
26
|
6
|
|
|
|
1200
|
800
|
480
|
300
|
240
|
192
|
150
|
120
|
96
|
76
|
60
|
48
|
38
|
10
|
|
|
|
|
|
800
|
500
|
400
|
320
|
250
|
200
|
160
|
127
|
100
|
80
|
64
|
16
|
|
|
|
|
|
|
800
|
640
|
512
|
400
|
320
|
256
|
203
|
160
|
128
|
102
|
25
|
|
|
|
|
|
|
|
|
800
|
625
|
500
|
400
|
317
|
250
|
200
|
160
|
35
|
|
|
|
|
|
|
|
|
|
875
|
700
|
560
|
444
|
350
|
280
|
224
|
50
|
|
|
|
|
|
|
|
|
|
|
|
760
|
603
|
475
|
380
|
304
|
F43 - Tab1161
Sph
|
Rated current (A)
|
mm2
|
1
|
2
|
3
|
4
|
6
|
10
|
16
|
20
|
25
|
32
|
40
|
50
|
63
|
80
|
100
|
125
|
1.5
|
600
|
300
|
200
|
150
|
100
|
60
|
37
|
30
|
24
|
18
|
15
|
12
|
9
|
7
|
6
|
5
|
2.5
|
|
500
|
333
|
250
|
167
|
100
|
62
|
50
|
40
|
31
|
25
|
20
|
16
|
12
|
10
|
8
|
4
|
|
|
533
|
400
|
267
|
160
|
100
|
80
|
64
|
50
|
40
|
32
|
25
|
20
|
16
|
13
|
6
|
|
|
|
600
|
400
|
240
|
150
|
120
|
96
|
75
|
60
|
48
|
38
|
30
|
24
|
19
|
10
|
|
|
|
|
677
|
400
|
250
|
200
|
160
|
125
|
100
|
80
|
63
|
50
|
40
|
32
|
16
|
|
|
|
|
|
640
|
400
|
320
|
256
|
200
|
160
|
128
|
101
|
80
|
64
|
51
|
25
|
|
|
|
|
|
|
625
|
500
|
400
|
312
|
250
|
200
|
159
|
125
|
100
|
80
|
35
|
|
|
|
|
|
|
875
|
700
|
560
|
437
|
350
|
280
|
222
|
175
|
140
|
112
|
50
|
|
|
|
|
|
|
|
|
760
|
594
|
475
|
380
|
301
|
237
|
190
|
152
|
F44 - Tab1162
Sph
|
Rated current (A)
|
mm2
|
1
|
2
|
3
|
4
|
6
|
10
|
16
|
20
|
25
|
32
|
40
|
50
|
63
|
80
|
100
|
125
|
1.5
|
429
|
214
|
143
|
107
|
71
|
43
|
27
|
21
|
17
|
13
|
11
|
9
|
7
|
5
|
4
|
3
|
2.5
|
714
|
357
|
238
|
179
|
119
|
71
|
45
|
36
|
29
|
22
|
18
|
14
|
11
|
9
|
7
|
6
|
4
|
|
571
|
381
|
286
|
190
|
114
|
71
|
80
|
46
|
36
|
29
|
23
|
18
|
14
|
11
|
9
|
6
|
|
857
|
571
|
429
|
286
|
171
|
107
|
120
|
69
|
54
|
43
|
34
|
27
|
21
|
17
|
14
|
10
|
|
|
952
|
714
|
476
|
284
|
179
|
200
|
114
|
89
|
71
|
57
|
45
|
36
|
29
|
23
|
16
|
|
|
|
|
762
|
457
|
286
|
320
|
183
|
143
|
114
|
91
|
73
|
57
|
46
|
37
|
25
|
|
|
|
|
|
714
|
446
|
500
|
286
|
223
|
179
|
143
|
113
|
89
|
71
|
57
|
35
|
|
|
|
|
|
|
625
|
700
|
400
|
313
|
250
|
200
|
159
|
125
|
80
|
100
|
50
|
|
|
|
|
|
|
|
848
|
543
|
424
|
339
|
271
|
215
|
170
|
136
|
109
|
F51 - Tab1163
Minimum functions required
|
Components and devices
|
Examples
|
Protection against overvoltages at power frequency
|
(1) Voltage limiter
|
Cardew C
|
Neutral earthing resistor (for impedance earthing variation)
|
(2) Resistor
|
Impedance Zx
|
Overall earth-fault monitor with alarm for first fault condition
|
(3) Permanent insulation monitor PIM with alarm feature
|
Vigilohm IM10
or IM400
|
Automatic fault clearance on second fault and protection of the neutral conductor against overcurrent
|
(4) Four-pole circuit-breakers
(if the neutral is distributed) all 4 poles trip
|
Compact circuit-breaker or RCD-MS
|
Location of first fault
|
(5) With device for fault-location on live system, or by successive opening of circuits
|
Vigilohm XGR+XRM or XD312 or XL308
|
Fig. F51 – Essential functions in IT schemes and examples with Schneider Electric products
F57 - Tab1164
Circuit
|
Conductor material
|
m = Sph/SPE (or PEN)
|
m = 1
|
m = 2
|
m = 3
|
m = 4
|
3 phases
|
Copper
|
0.86
|
0.57
|
0.43
|
0.34
|
Aluminium
|
0.54
|
0.36
|
0.27
|
0.21
|
3ph + N or 1ph + N
|
Copper
|
0.50
|
0.33
|
0.25
|
0.20
|
Aluminium
|
0.31
|
0.21
|
0.16
|
0.12
|
Fig. F57 – Correction factor to apply to the lengths given in tables F41 to F44 for IT systems
- Tab1165
Influence of the electrical network
|
Disturbed network
|
Super-immunized residual current protections
Type A SI:
|
Super-immunized residual current protections
SI:
|
Super-immunized residual current protections
SI:
+ Appropriate additional protection (sealed cabinet or unit)
|
Super-immunized residual current protections
SI:
+ Appropriate additional protection (sealed cabinet or unit + overpressure)
|
Clean network
|
Standard immunized residual current protections
Type AC
|
Presence of corrosive or polluting substances(IEC 60364-5-51)
|
Negligible presence
|
Significant presence of atmospheric origin
|
Intermittent or accidental subjection to corrosive or polluting chemical substances
|
Continuous subjection to corrosive or polluting chemical substances
|
Severity level
|
AF1
|
AF2
|
AF3
|
AF4
|
Characteristics required for selection and erection of equipment
|
Normal.
|
According to the nature of substances (for example, compliance to salt mist test according to IEC 60068-2-11)
|
Protection against corrosion according to equipment specification
|
Equipment specially designed according to the nature of substances
|
F70 - Tab1165
Examples of exposed sites
|
External influences
|
Iron and steel works.
|
Presence of sulfur, sulfur vapor, hydrogen sulfide.
|
Marinas, trading ports, boats, sea edges, naval shipyards.
|
Salt atmospheres, humid outside, low temperatures.
|
Swimming pools, hospitals, food & beverage.
|
Chlorinated compounds.
|
Petrochemicals.
|
Hydrogen, combustion gases, nitrogen oxides.
|
Breeding facilities, tips.
|
Hydrogen sulfide.
|
Fig. F70 – External influence classification according to IEC 60364-5-51 standard
F71 - Tab1166
Device type
|
Nuisance trippings
|
Non-trippings
|
High frequency leakage current
|
Fault current
|
Low temperatures (down to - 25°C)
|
Corrosion Dust
|
Rectified alternating
|
Pure direct
|
AC
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
|
|
|
|
A
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
|
SI
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
B
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math] [math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
[math]\displaystyle{ \definecolor{bggrey}{RGB}{234,234,234}\pagecolor{bggrey}\definecolor{myblue}{rgb}{0.26,0.71,0.9}\color{myblue}\blacksquare }[/math]
|
|
Fig. F71 – Immunity level of Schneider Electric RCDs
F72 - Tab1167
Disturbance type
|
Rated test wave
|
Immunity
Acti 9, ID-RCCB, DPN Vigi, Vigi iC60, Vigi C120, Vigi NG125
SI type
|
Continuous disturbances
|
Harmonics
|
1 kHz
|
Earth leakage current = 8 x I∆n
|
Transient disturbances
|
Lightning induced overvoltage
|
1.2 / 50 µs pulse
(IEC/EN 61000-4-5)
|
4.5 kV between conductors 5.5 kV / earth
|
Lightning induced current
|
8 / 20 µs pulse
(IEC/EN 61008)
|
5 kA peak
|
Switching transient, indirect lightning currents
|
0.5 µs / 100 kHz “ring wave”
(IEC/EN 61008)
|
400 A peak
|
Downstream surge arrester operation, capacitance loading
|
10 ms pulse
|
500 A
|
Electromagnetic compatibility
|
Inductive load switchings fluorescent lights, motors, etc.)
|
Repeated bursts
(IEC 61000-4-4)
|
5 kV / 2.5 kHz
4 kV / 400 kHz
|
Fluorescent lights, thyristor controlled circuits, etc.
|
RF conducted waves
(level 4 IEC 61000-4-6) (level 4 IEC 61000-4-16)
|
30 V (150 kHz to 230 MHz)
250 mA (15 kHz to 150 kHz)
|
RF waves (TV & radio, broadcact, telecommunications,etc.)
|
RF radiated waves 80 MHz to 1 GHz
(IEC 61000-4-3)
|
30 V / m
|
Fig. F72 – Immunity to nuisance tripping tests undergone by Schneider Electric RCDs
F74 - Tab1168
Measures
|
Diameter (mm)
|
Sensitivity diminution factor
|
Careful centralizing of cables through the ring core
|
3
|
Oversizing of the ring core
|
ø 50 → ø 100
|
2
|
ø 80 → ø 200
|
2
|
ø 120 → ø 300
|
6
|
Use of a steel or soft-iron shielding sleeve
|
ø 50
|
4
|
|
ø 80
|
3
|
- Of length 2 x inside diameter of ring core
|
ø 120
|
3
|
- Completely surrounding the conductors and overlapping
the circular core equally at both ends
|
ø 200
|
2
|
These measures can be combined. By carefully centralizing the cables in a ring core of 200 mm diameter, where a 50 mm core would be large enough, and using a sleeve, the ratio 1/1000 could become 1/30000.
Fig. F74 – Means of reducing the ratio IΔn/Iph (max.)
<references>
[1]
- ^ 1 2 3 4 For the definition of type B, C, D circuit breakers, refer to Fundamental characteristics of a circuit-breaker