Chapter G

Sizing and protection of conductors


Recommended simplified approach for cable sizing

From Electrical Installation Guide
Revision as of 13:53, 21 March 2011 by Wikiadmin (talk | contribs) (Created page with '{{Menu_Sizing_and_protection_of_conductors}} __TOC__ In order to facilitate the selection of cables, 2 simplified tables are proposed, for unburied and buried cables.<br>These t…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Home > Sizing and protection of conductors > Practical method for determining the smallest allowable cross-sectional area of circuit conductors > Recommended simplified approach for cable sizing

In order to facilitate the selection of cables, 2 simplified tables are proposed, for unburied and buried cables.
These tables summarize the most commonly used configurations and give easier access to the information.

  • Unburied cables:


Reference
methods
Number of loaded conductors and type of insulation 
A1   2 PVC 3 PVC   3 XLPE 2 XLPE            
A2 3 PVC 2 PVC   3 XLPE 2 XLPE               
B1       3 PVC 2 PVC     3 XLPE   2 XLPE      
B2     3 PVC 2 PVC   3 XLPE 2 XLPE          
C         3 PVC   2 PVC 3 XLPE   2 XLPE    
E           3 PVC    2 PVC 3 XLPE   2 XLPE   
F             3 PVC     2 PVC 3XLPE     2 XLPE
1 2 3 4 5 6 7 8 9 10 11 12 13
Size (mm2)
Copper
1.5 13 13.5 14.5 15.5 17 18.5 19.5 22 23 24 26 -
2.5 17.5 18 19.5 21 23 25 27   30 31 33 36 -
4 23 24 26 28 31 34 36 40 42 45 49 -
6 29 31 34 36 40 43 46 51 54 58 63 -
10 39 42 46 50 54 60 63 70 75 80 86 -
16 52 56 61 68 73 80 85 94 100 107 115 -
25 68 73 80 89 95 101 110 119 127 135 149 161
35 - - - 110 117 126 137 147 158 169 185 200
50 - - - 134 141 153 167 179 192 207 225 242
70 - - - 171 179 196 213 229 246 268 289 310
95 - - - 207 216 238 258 278 298 328 352 377
120 - - - 239 249 276 299 322 346 382 410 437
150 - - - - 285 318 344 371 395 441 473 504
185 - - - - 324 362 392 424 450 506 542 575
240 - - - - 380 424 461 500 538 599 641 679
Aluminium
2.5 13.5 14 15 16.5 18.5 19.5 21 23 24 26 28 -
4 17.5 18.5 20 22 25 26 28 31 32 35 38 -
6 23 24 26 28 32 33 36 39 42 45 49 -
10 31 32 36 39 44 46 49 54 58 62 67 -
16 41 43 48 53 58 61 66 73 77 84 91 -
25 53 57 63 70 73 78 83 90 97 101 108 121
35 - - - 86 90 96 103 112 120 126 135 150
50 - - - 104 110 117 125 136 146 154 164 184
70 - - - 133 140 150 160 174 187 198 211 237
95 - - - 161 170 183 195 211 227 241 257 289
120 - - - 186 197 212 226 245 263 280 300 337
150 - - - - 226 245 261 283 304 324 346 389
185 - - - - 256 280 298 323 347 371 397 447
240 - - - - 300 330 352 382 409 439 470 530

Fig. G21a: Current-carrying capacity in amperes (table B.52-1 of IEC 60364-5-52)


Correction factors are given in Figure G21b for groups of several circuits or multi-core cables:



Arrangement Number of circuits or multi-core cables
1 2 3 4 6 9 12 16 20
Embedded or enclosed                               1.00 0.80 0.70 0.70 0.55 0.50 0.45 0.40 0.40
Single layer on walls, floors or on unperforated trays 1.00 0.85 0.80 0.75 0.70 0.70 - - -
Single layer fixed directly under a ceiling 0.95 0.80 0.70 0.70 0.65 0.60 - - -
Single layer on perforated horizontal trays or on vertical trays 1.00 0.90 0.80 0.75 0.75 0.70 - - -
Single layer on cable ladder supports or cleats, etc... 1.00 0.85 0.80 0.80 0.80 0.80 - - -

Fig. G21b: Reduction factors for groups of several circuits or of several multi-core cables(table B.52-3 of IEC 60364-5-52)


  • Buried cables:


Installation  method  Size mm2
Number of loaded conductors and type of insulation  
Two PVC Three PVC Two XLPE Three XLPE
D 
  
  
  
  
  
    
  
  
  
  
     
  
 
Copper
1.5 22 18 26 22
2.5 29 24 34 29
4 38 31 44 37
6 47 39 56 46
10 63 52 73 61
16 81 67 95 79
25 104 86 121 101
35 125 103 146 122
50 148 122 173 144
70 183 151 213 178
95 216 179 252 211
120 246 203 287 240
150 278 230 324 271
185 312 258 363 304
240 361 297 419 351
300 408 336 474 396
D 
  
  
  
   
   
  
  
   
   
   
  
   
   
 
  
Aluminium
2.5 22 18.5 26 22
4 29 24 34 29
6 36 30 42 36
10 48 40 56 47
16 62 52 73 61
25 80 66 93 78
35 96 80 112 94
50 113 94 132 112
70 140 117 163 138
95 166 138 193 164
120 189 157 220 186
150 213 178 249 210
185 240 200 279 236
240 277 230 322 272
300 313 260 364 308

Fig. G22: Current-carrying capacity in amperes (table B.52-1 of IEC 60364-5-52)



Busbar trunking systems

The selection of busbar trunking systems is very straightforward, using the data provided by the manufacturer. Methods of installation, insulation materials, correction factors for grouping are not relevant parameters for this technology.

The cross section area of any given model has been determined by the manufacturer based on:

  • The rated current,
  • An ambient air temperature equal to 35 °C,
  • 3 loaded conductors.
Rated current

The rated current can be calculated taking account of:

  • The layout,
  • The current absorbed by the different loads connected along the trunking system.
Ambient temperature

A correction factor has to be applied for temperature higher than 35 °C. The correction factor applicable to medium and high power range (up to 4,000 A) is given in Figure G23a.



°C 35 40 45 50 55
Correction factor 1 0.97 0.93 0.90 0.86

Fig. G23a: Correction factor for air temperature higher than 35 °C


Neutral current

Where 3rd harmonic currents are circulating, the neutral conductor may be carrying a significant current and the corresponding additional power losses must be taken into account.
Figure G23b represents the maximum admissible phase and neutral currents (per unit) in a high power busbar trunking system as functions of 3rd harmonic level.



FigG23b.jpg



















Fig. G23b: Maximum admissible currents (p.u.) in a busbar trunking system as functions of the 3rd harmonic level.


The layout of the trunking system depends on the position of the current consumers, the location of the power source and the possibilities for fixing the system.
  - One single distribution line serves a 4 to 6 meter area
  - Protection devices for current consumers are placed in tap-off units, connected directly to usage points.
  - One single feeder supplies all current consumers of different powers.
Once the trunking system layout is established, it is possible to calculate the absorbed current In on the distribution line.
In is equal to the sum of absorbed currents by the current In consumers: In = Σ IB.
The current consumers do not all work at the same time and are not permanently on full load, so we have to use a clustering coefficient kS : In = Σ (IB . kS).



Application Number of current consumers Ks Coefficient
Lighting, Heating   1

Distribution (engineering workshop)
2...3 0.9
4...5 0.8
6...9 0.7
10...40 0.6
40 and over 0.9 0.5

Note: for industrial installations, remember to take account of upgrading of the machine equipment base. As for a switchboard, a 20 % margin is recommended:
In ≤ IB x ks x 1.2.

Fig G24: Clustering coefficient according to the number of current consumers

Share